Skip to main content
Log in

Semi-classical dispersive estimates

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove dispersive estimates for the wave group \(e^{it\sqrt{P(h)}}\) and the Schrödinger group \(e^{itP(h)}\), where \(P(h)\) is a self-adjoint, elliptic second-order differential operator depending on a parameter \(0<h\le 1\), which is supposed to be a short-range perturbation of \(-h^2\Delta \), \(\Delta \) being the Euclidean Laplacian. In particular, applications are made to non-trapping metric perturbations and to perturbations by a magnetic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals, M.: Optimal \(L^\infty \) decay estimates for solutions to the wave equation with a potential. Commun. Partial Differ. Eq. 19, 1319–1369 (1994)

    Article  MATH  Google Scholar 

  2. Burq, N.: Lower bounds for shape resonances widths of long range Schrödinger operators. Am. J. Math. 124, 677–735 (2002)

    Article  MATH  Google Scholar 

  3. Cardoso, F., Vodev, G.: Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II. Ann. H. Poincaré 3, 673–691 (2002)

    Article  MATH  Google Scholar 

  4. Cardoso, F., Vodev, G.: Semi-classical dispersive estimates for the wave and Schrödinger equations with a potential in dimensions \(n\ge 4\). Cubo Math. J. 10, 1–14 (2008)

    MATH  Google Scholar 

  5. Cardoso, F., Vodev, G.: Optimal dispersive estimates for the wave equation with \(C^{\frac{n-3}{2}}\) potentials in dimensions \(4\le n\le 7\). Commun. Partial Differ. Equ. 37, 88–124 (2012)

    Article  MATH  Google Scholar 

  6. Cardoso, F., Cuevas, C., Vodev, G.: Weighted dispersive estimates for solutions of the Schrödinger equation. Serdica Math. J. 34, 39–54 (2008)

    MATH  Google Scholar 

  7. Cardoso, F., Cuevas, C., Vodev, G.: Dispersive estimates for the Schrödinger equation in dimensions four and five. Asymptot. Anal. 62, 125–145 (2009)

    MATH  Google Scholar 

  8. Cardoso, F., Cuevas, C., Vodev, G.: High-frequency resolvent estimates for perturbations by large long-range magnetic potentials and applications to dispersive estimates. Ann. H. Poincaré 14, 95–117 (2013)

    Article  MATH  Google Scholar 

  9. D’ancona, P., Pierfelice, V.: On the wave equation with a large rough potential. J. Funct. Anal. 227, 30–77 (2005)

    Article  MATH  Google Scholar 

  10. Erdogan, M.B., Green, W.R.: Dispersive estimates for the Schrödinger equation for \(C^{\frac{n-3}{2}}\) potentials in odd dimensions. IMRN 2010(13), 2532–2565 (2010)

    MATH  Google Scholar 

  11. Erdogan, M., Goldberg, M., Schlag, W.: Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum. Math. 21, 687–722 (2009)

    Article  MATH  Google Scholar 

  12. Goldberg, M.: Dispersive bounds for the three dimensional Schrödinger equation with almost critical potentials. Geom. Funct. Anal. 16, 517–536 (2006)

    MATH  Google Scholar 

  13. Goldberg, M., Visan, M.: A counterexample to dispersive estimates for Schrödinger operators in higher dimensions. Commun. Math. Phys. 266, 211–238 (2006)

    Article  MATH  Google Scholar 

  14. Journé, J.-L., Soffer, A., Sogge, C.: Decay estimates for Schrödinger operators. Comm. Pure Appl. Math. 44, 573–604 (1991)

    Article  MATH  Google Scholar 

  15. Moulin, S.: High frequency dispersive estimates in dimension two. Ann. H. Poincaré 10, 415–428 (2009)

    Article  MATH  Google Scholar 

  16. Moulin, S., Vodev, G.: Low-frequency dispersive estimates for the Schrödinger group in higher dimensions. Asymptot. Anal. 55, 49–71 (2007)

    MATH  Google Scholar 

  17. Nonnenmacher, S., Zworski, M.: Quantum decay rates in chaotic scattering. Acta Math. 203, 149–233 (2009)

    Article  MATH  Google Scholar 

  18. Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough time-dependent potentials. Invent. Math. 155, 451–513 (2004)

    Article  MATH  Google Scholar 

  19. Schlag, W.: Dispersive estimates for Schrödinger operators in two dimensions. Commun. Math. Phys. 257, 87–117 (2005)

    Article  MATH  Google Scholar 

  20. Vodev, G.: Dispersive estimates of solutions to the wave equation with a potential in dimensions \(n\ge 4\). Commun. Partial Diff. Equ. 31, 1709–1733 (2006)

    Article  MATH  Google Scholar 

  21. Vodev, G.: Dispersive estimates of solutions to the Schrödinger equation in dimensions \(n\ge 4\). Asymptot. Anal. 49, 61–86 (2006)

    MATH  Google Scholar 

Download references

Acknowledgments

A part of this work has been carried out while G. V. was visiting the Universidade Federal de Pernambuco, Brazil, with the partial support of the Brazilian-French Network in Mathematics. The first author has been partially supported by the CNPq-Brazil. The second author is supported by the CNPq-Brazil under Grant 478053/2013-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Vodev.

Appendix

Appendix

In this appendix we will sketch the proof of the estimates (4.3)–(4.6). To this end, we will use the fact that the kernels of the operators \(e^{it\sqrt{P_0(h)}}\varphi (P_0(h))\) and \(e^{itP_0(h)}\varphi (P_0(h))\) are of the form \(K_h(|x-y|,t)\) and \(\widetilde{K}_h(|x-y|,t)\), respectively, where

$$\begin{aligned} K_h(w,t)=\frac{w^{2-n}}{(2\pi )^{n/2}}\int \limits _0^\infty e^{ith\lambda }\varphi (h^2\lambda ^2){\mathcal {J}}_{\frac{n-2}{2}}(w\lambda )\lambda d\lambda =h^{-n}K_1(w/h,t),\end{aligned}$$
(6.1)
$$\begin{aligned} \widetilde{K}_h(w,t)=\frac{w^{2-n}}{(2\pi )^{n/2}}\int \limits _0^\infty e^{ith^2\lambda ^2}\varphi (h^2\lambda ^2){\mathcal {J}}_{\frac{n-2}{2}}(w\lambda )\lambda d\lambda =h^{-n}\widetilde{K}_1(w/h,t), \end{aligned}$$
(6.2)

where \({\mathcal {J}}_{\frac{n-2}{2}}(z)=z^{(n-2)/2}J_{\frac{n-2}{2}}(z)\), \(J_{\frac{n-2}{2}}(z)\) being the Bessel function of order \(\frac{n-2}{2}\). In view of the inequality

$$\begin{aligned} \langle x\rangle ^{-\sigma }\langle y\rangle ^{-\sigma }\le \langle x-y\rangle ^{-\sigma },\quad \forall \sigma \ge 0, \end{aligned}$$

it is easy to see that the estimates (4.3)–(4.6) follow from the following

Lemma 6.1

For all \(w>0, t\ne 0, 0<h\le 1, s\ge 0\), we have

$$\begin{aligned}&\left| K_h(w,t)\right| \le C|t|^{-s}h^{-s-(n+1)/2}g_s(w),\end{aligned}$$
(6.3)
$$\begin{aligned}&\int \limits _{-\infty }^\infty |t|^{2s}\left| K_h(w,t)\right| ^2dt\le Ch^{-2s-n-1}g_s(w)^2,\end{aligned}$$
(6.4)
$$\begin{aligned}&\left| \widetilde{K}_h(w,t)\right| \le C|t|^{-s-1/2}h^{-s-(n+1)/2}g_s(w),\end{aligned}$$
(6.5)
$$\begin{aligned}&\int \limits _{-\infty }^\infty |t|^{2s}\left| \widetilde{K}_h(w,t)\right| ^2dt\le Ch^{-2s-n-1}g_s(w)^2, \end{aligned}$$
(6.6)

where \(g_s(w)=w^{s-(n-1)/2}\) if \(s\le (n-1)/2\), \(g_s(w)=\langle w\rangle ^{s-(n-1)/2}\) if \(s\ge (n-1)/2\).

Proof

In view of the identities (6.1) and (6.2), it is clear that it suffices to prove (6.3)–(6.6) for \(h=1\). Let first \(w\le 1\). Recall that near \(z=0\) the function \({\mathcal {J}}_{\frac{n-2}{2}}(z)\) is equal to \(z^{n-2}\) times an analytic function. Using this and integrating by parts, it is easy to see that in this case the functions \(K_1\) and \(\widetilde{K}_1\) satisfy the bounds

$$\begin{aligned}&\left| K_1(w,t)\right| \le C|t|^{-s},\end{aligned}$$
(6.7)
$$\begin{aligned}&\left| \widetilde{K}_1(w,t)\right| \le C|t|^{-s-1/2}, \end{aligned}$$
(6.8)

for every \(s\ge 0\). Clearly, when \(w\le 1\) the estimates (6.3)–(6.6) follow from (6.7) and (6.8). Let now \(w\ge 1\). In this case we will use the fact that for \(z\gg 1\) the function \({\mathcal {J}}_{\frac{n-2}{2}}(z)\) is of the form \(e^{iz}b^+(z)+e^{-iz}b^-(z)\), where \(b^\pm (z)\) are symbols of order \(\frac{n-3}{2}\). Given any integers \(k,\ell \ge 0\), set

$$\begin{aligned} b_k^\pm (z)=e^{\mp iz}\frac{d^k}{dz^k}\left( e^{\pm iz}b^\pm (z)\right) ,\quad b_{k,\ell }^\pm (z)=\frac{d^\ell }{dz^\ell }b_k^\pm (z). \end{aligned}$$

Clearly, \(b_k^\pm (z)\) are also symbols of order \(\frac{n-3}{2}\). Hence

$$\begin{aligned} \left| b_{k,\ell }^\pm (z)\right| \le C_{k,\ell }z^{\frac{n-3}{2}-\ell },\quad \forall z\ge 1. \end{aligned}$$
(6.9)

Let \(m,N\ge 0\) be integers. Integrating \(m\) times by parts, we can write

$$\begin{aligned} K_1(w,t)=\frac{w^{2-n}}{(2\pi )^{n/2}}(it)^{-m} \sum _\pm \sum _{k=0}^m\int \limits _0^\infty e^{i(t\pm w)\lambda }w^kb_k^\pm (w\lambda )\varphi _{k,m}(\lambda )d\lambda , \end{aligned}$$

with some functions \(\varphi _{k,m}\in C_0^\infty ((0,+\infty ))\) independent of \(w\) and \(t\). We now integrate \(N\) times by parts to obtain

$$\begin{aligned} K_1(w,t)=\frac{w^{2-n}}{(2\pi )^{n/2}}(it)^{-m}\sum _\pm \sum _{k=0}^m\sum _{\ell =0}^N(t\pm w)^{-N}\int \limits _0^\infty e^{i(t\pm w)\lambda }w^kb_{k,\ell }^\pm (w\lambda )\varphi _{k,\ell ,m,N}(\lambda )d\lambda . \end{aligned}$$

Hence, in view of (6.9), we get the bound

$$\begin{aligned} \left| K_1(w,t)\right| \le C_{m,N}w^{m-\frac{n-1}{2}}|t|^{-m}\left( |t-w|^{-N}+|t+w|^{-N}\right) . \end{aligned}$$
(6.10)

By interpolation, (6.10) holds for all real \(m\ge 0\). It is easy to see now that the estimates (6.3) and (6.4) (with \(h=1\)) follow from (6.10).

Integrating by parts \(m\) times with respect to the variable \(\lambda ^2\) we can write the function \(\widetilde{K}_1\) as follows

$$\begin{aligned} \widetilde{K}_1(w,t)&= \frac{w^{2-n}}{(2\pi )^{n/2}}(it)^{-m}\sum _{k=0}^m\int \limits _0^\infty e^{it\lambda ^2}\widetilde{\varphi }_{k,m}(\lambda )\frac{d^k}{d(\lambda ^2)^k}{\mathcal {J}}_{\frac{n-2}{2}}(w\lambda )d\lambda \\&= \frac{w^{2-n}}{(2\pi )^{n/2}}(it)^{-m}\sum _{k=0}^m\int \limits _0^\infty e^{it\lambda ^2}f_{k,m}(w,\lambda )d\lambda , \end{aligned}$$

where

$$\begin{aligned} f_{k,m}(w,\lambda )=\widetilde{\varphi }_{k,m}^\sharp (\lambda ) \frac{d^k}{d\lambda ^k}{\mathcal {J}}_{\frac{n-2}{2}}(w\lambda ). \end{aligned}$$

We now apply the inequality

$$\begin{aligned} \left| \int \limits _0^\infty e^{it\lambda ^2}f(\lambda )d\lambda \right| \le C|t|^{-1/2}\left\| \widehat{f}\right\| _{L^1},\quad \forall f\in C_0^\infty (\mathbf{R}), \end{aligned}$$

to get

$$\begin{aligned} \left| \widetilde{K}_1(w,t)\right| \le C_mw^{2-n}|t|^{-m-1/2}\sum _{k=0}^m\left\| \widehat{f}_{k,m}(\cdot ,w)\right\| _{L^1}. \end{aligned}$$
(6.11)

On the other hand, as above one can see that the function \(\widehat{f}_{k,m}\) satisfies the bound

$$\begin{aligned} \left| \widehat{f}_{k,m}(\tau ,w)\right| \le C_{N}w^{k+\frac{n-3}{2}}\left( |\tau -w|^{-N}+|\tau +w|^{-N}\right) \end{aligned}$$
(6.12)

for every integer \(N\ge 0\). By (6.12)

$$\begin{aligned} \left\| \widehat{f}_{k,m}(\cdot ,w)\right\| _{L^1}\le Cw^{k+\frac{n-3}{2}}. \end{aligned}$$
(6.13)

By (6.11) and (6.13)

$$\begin{aligned} \left| \widetilde{K}_1(w,t)\right| \le C_mw^{m-\frac{n-1}{2}}|t|^{-m-1/2} \end{aligned}$$
(6.14)

for every integer \(m\ge 0\), and hence by interpolation for all real \(m\ge 0\), which in turn proves (6.5). It is easy also to see that (6.6) (with \(h=1\)) follows from (6.14). Indeed, applying (6.14) with \(m=s-\epsilon \) and \(m=s+\epsilon \), we have

$$\begin{aligned}&\int \limits _{-\infty }^\infty |t|^{2s}\left| \widetilde{K}_h(w,t)\right| ^2dt\\&\quad \le Cw^{2s-2\epsilon -n+1}\int \limits _{|t|\le w}|t|^{-1+2\epsilon }dt+ Cw^{2s+2\epsilon -n+1}\int \limits _{|t|\ge w}|t|^{-1-2\epsilon }dt\le Cw^{2s-n+1}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, F., Cuevas, C. & Vodev, G. Semi-classical dispersive estimates. Math. Z. 278, 251–277 (2014). https://doi.org/10.1007/s00209-014-1314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1314-6

Keywords

Navigation