Skip to main content

Advertisement

Log in

Hurwitz ball quotients

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the analogue of Hurwitz curves, smooth projective curves \(C\) of genus \(g \ge 2\) that realize equality in the Hurwitz bound \(|{{\mathrm{Aut}}}(C)| \le 84 (g - 1)\), to smooth compact quotients \(S\) of the unit ball in \(\mathbb C^2\). When \(S\) is arithmetic, we show that \(|{{\mathrm{Aut}}}(S)| \le 288 e(S)\), where \(e(S)\) is the (topological) Euler characteristic, and in the case of equality show that \(S\) is a regular cover of a particular Deligne–Mostow orbifold. We conjecture that this inequality holds independent of arithmeticity, and note that work of Xiao makes progress on this conjecture and implies the best-known lower bound for the volume of a complex hyperbolic \(2\)-orbifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adeboye, I., Wei, G.: On volumes of complex hyperbolic orbifolds. Mich. Math. J. (2014). arxiv:1205.2011 (To appear)

  2. Allcock, D.: The Leech lattice and complex hyperbolic reflections. Invent. Math. 140(2), 283–301 (2000)

    Article  MATH  Google Scholar 

  3. Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of nonpositive curvature, volume 61 of Progress in Mathematics. Birkhäuser (1985)

  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput., 24(3–4):235–265 (1997). Computational algebra and number theory (London, 1993)

    Google Scholar 

  5. Bordeaux number field tables. Available at http://pari.math.u-bordeaux.fr/pub/pari/packages/nftables/

  6. Cartwright, D.I., Steger, T.: Enumeration of the 50 fake projective planes. C. R. Math. Acad. Sci. Paris 348(1–2), 11–13 (2010)

    Article  MATH  Google Scholar 

  7. Conder, M.: An update on Hurwitz groups. Groups Complex. Cryptol. 2(1), 35–49 (2010)

    MATH  Google Scholar 

  8. Deligne, P., Mostow, G.D.: Monodromy of hypergeometric functions and nonlattice integral monodromy. Inst. Hautes Études Sci. Publ. Math. 63, 5–89 (1986)

    Article  MATH  Google Scholar 

  9. Deraux, M., Parker, J., Paupert, J.: A family of new non-arithmetic complex hyperbolic lattices, arxiv:1401.0308

  10. Diaz y Diaz, F.: Tables minorant la racine \(n\)-ième du discriminant d’un corps de degré \(n\), volume 6 of Publications Mathématiques d’Orsay 80. Université de Paris-Sud Département de Mathématique (1980)

  11. Emery, V., Stover, M.: Covolumes of nonuniform lattices in \(\text{ PU }(n, 1)\). Am. J. Math. 136(1), 143–164 (2014)

    Article  MATH  Google Scholar 

  12. Gehring, F.W., Martin, G.J.: On the minimal volume hyperbolic \(3\)-orbifold. Math. Res. Lett. 1(1), 107–114 (1994)

    Article  MATH  Google Scholar 

  13. Frederick W, G., Gaven J., M.: Minimal co-volume hyperbolic lattices. I. The spherical points of a Kleinian group. Ann. Math. (2) 170(1), 123–161 (2009)

    Article  MATH  Google Scholar 

  14. Griffiths, P., Harris, J.: Principles of algebraic geometry. Wiley Classics Library, NY (1994)

  15. Hirzebruch, F.: Arrangements of lines and algebraic surfaces. In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pp. 113–140. Birkhäuser (1983)

  16. Každan, D.A., Margulis, G.A.: A proof of Selberg’s hypothesis. Math. Sbornik 75(117), 163–168 (1968)

    Google Scholar 

  17. Kirwan, F.C., Lee, R., Weintraub, S.H.: Quotients of the complex ball by discrete groups. Pacific J. Math. 130(1), 115–141 (1987)

    Article  MATH  Google Scholar 

  18. Lehrer, G.I., Taylor, D.E.: Unitary reflection groups, Vol. 20 of Australian Mathematical Society Lecture Series. Cambridge University Press, Cambridge (2009)

  19. Marshall, T.H., Martin, G.J.: Minimal co-volume hyperbolic lattices, II: Simple torsion in a Kleinian group. Ann. Math. (2) 176(1), 261–301 (2012)

    Article  MATH  Google Scholar 

  20. McMullen, C.T.: The Gauss-Bonnet theorem for cone manifolds and volumes of moduli spaces. Available at http://math.harvard.edu/~ctm/papers/index.html

  21. Milne, J.S.: Introduction to Shimura varieties. Available at http://jmilne.org/math/xnotes/svi.pdf

  22. Mostow, G.D.: On a remarkable class of polyhedra in complex hyperbolic space. Pacific J. Math. 86(1), 171–276 (1980)

    Article  MATH  Google Scholar 

  23. Mostow, G.D.: Generalized Picard lattices arising from half-integral conditions. Inst. Hautes Études Sci. Publ. Math. 63, 91–106 (1986)

    Article  MATH  Google Scholar 

  24. Mostow, G.D.: On discontinuous action of monodromy groups on the complex \(n\)-ball. J. Am. Math. Soc. 1(3), 555–586 (1988)

    MATH  Google Scholar 

  25. Odlyzko, A.M.: Some analytic estimates of class numbers and discriminants. Invent. Math. 29(3), 275–286 (1975)

    Article  Google Scholar 

  26. Parker, J.R.: On the volumes of cusped, complex hyperbolic manifolds and orbifolds. Duke Math. J. 94(3), 433–464 (1998)

    Article  MATH  Google Scholar 

  27. Prasad, G.: Volumes of \(S\)-arithmetic quotients of semi-simple groups. Inst. Hautes Études Sci. Publ. Math. 69, 91–117 (1989)

    Article  MATH  Google Scholar 

  28. Prasad, G., Yeung, S.-K.: Fake projective planes. Invent. Math. 168(2), 321–370 (2007)

    Article  MATH  Google Scholar 

  29. Kurt Sauter Jr, J.: Isomorphisms among monodromy groups and applications to lattices in \({{\rm PU}}(1,2)\). Pacific J. Math. 146(2), 331–384 (1990)

    Article  MATH  Google Scholar 

  30. Sh, I.: Slavut\({\cdot }\)skiĭ. On the Zimmert estimate for the regulator of an algebraic field. Mat. Zametki 51(5), 153–155 (1992)

    Google Scholar 

  31. Stover, M.: Volumes of Picard modular surfaces. Proc. Am. Math. Soc. 139(9), 3045–3056 (2011)

    Article  MATH  Google Scholar 

  32. Thurston, W.P.: Shapes of polyhedra and triangulations of the sphere. In The Epstein birthday schrift, volume 1 of Geom. Topol. Monogr., pp. 511–549. Geom. Topol. Publ. (1998)

  33. Xiao, G.: Bound of automorphisms of surfaces of general type. I. Ann. Math. (2) 139(1), 51–77 (1994)

    Article  MATH  Google Scholar 

  34. Xiao, G.: Bound of automorphisms of surfaces of general type. II. J. Algebraic Geom. 4(4), 701–793 (1995)

    MATH  Google Scholar 

Download references

Acknowledgments

I am indebted to Domingo Toledo for discussions about visualizing the orbifold structure on a Deligne–Mostow quotient. Any insight into the geometry of these spaces not in the standard literature should be considered his, not mine. I also want to thank the referee for suggestions that undoubtedly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Stover.

Additional information

This material is based upon work supported by the National Science Foundation under Grant Number NSF 0943832.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stover, M. Hurwitz ball quotients. Math. Z. 278, 75–91 (2014). https://doi.org/10.1007/s00209-014-1306-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1306-6

Keywords

Navigation