Skip to main content
Log in

Derivations, the Lawrence–Sullivan interval and the Fiorenza–Manetti mapping cone

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We describe the rational homotopy type of any component of the based mapping space map*(X,Y) as an explicit L algebra defined on the (desuspended and positive) derivations between Quillen models of X and Y. When considering the Lawrence–Sullivan model of the interval, we obtain an L model of the contractible path space of Y. We then relate this, in a geometrical and natural manner, to the L structure on the Fiorenza–Manetti mapping cone of any differential graded Lie algebra morphism, two in principal different algebraic objects in which Bernoulli numbers appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baues H.J., Lemaire J.-M.: Minimal models in homotopy theory. Math. Ann. 225(3), 219–242 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buijs U.: An explicit L structure for the components of mapping spaces. Topol. Appl. 159(3), 721–732 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buijs U., Murillo A.: The rational homotopy Lie algebra of function spaces. Comment. Math. Helv. 83, 723–739 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buijs, U., Murillo, A.: Algebraic models of non connected spaces and homotopy theory of L algebras. (2012, preprint)

  5. Buijs, U., Félix, Y., Murillo, A.: L rational homotopy theory of mapping spaces. (2012, preprint)

  6. Buijs U., Félix Y., Murillo A.: L models of mapping spaces. J. Math. Soc. Jpn. 63(2), 503–524 (2011)

    Article  MATH  Google Scholar 

  7. Chas, M., Sullivan, D.: String topology. Ann. Math. (to appear)

  8. Félix, Y., Halperin, S., Thomas, J.: Rational homotopy theory. Graduate texts in Mathematics, vol. 205. Springer, New York (2000)

  9. Fiorenza D., Manetti M.: L structures on mapping cones. Algebr. Number Theory 1(3), 301–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fukaya, K.: Deformation theory, homological algebra and mirror symmetry. Geometry and physics of branes (Como, 2001). Ser. High Energy Phys. Cosmol. Gravit., pp. 121–209. IOP, Bristol (2003)

  11. Getzler E.: Lie theory for nilpotent L algebras. Ann. Math (2) 170(1), 271–301 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henriques A.: Integrating L algebras. Compos. Math. 144(4), 1017–1045 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huebschmann J., Kadeishvili T.: Small models for chain algebras. Math. Z. 207(2), 245–280 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kadeishvili T.V.: The algebraic structure in the homology of an A(∞)-algebra. Soobshch. Akad. Nauk Gruzin. SSR 108(2), 249–252 (1983)

    MathSciNet  Google Scholar 

  15. Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kontsevich, M., Soibelman, Y.: Deformations of algebras over operads and Deligne’s conjecture. In: Dito G., Sternheimer D. (eds.) Conférence Moshé Flato 1999, vol. I (Dijon, 1999), pp. 255–307. Kluwer, Dordrecht (2000)

  17. Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. Symplectic geometry and mirror symmetry (Seoul, 2000), pp. 203–263. World Scientific Publishing, River Edge (2001)

  18. Lada T., Markl M.: Strongly homotopy Lie algebras. Comm. Algebra 23(6), 2147–2161 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lada T., Stasheff J.: Introduction to sh algebras for physicists. Int. J. Theor. Phys. 32, 1087–1104 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Loday, J.-L., Vallette, B.: Algebraic operads. Preprint version available at http://math.unice.fr/~brunov/Operads.pdf

  21. Lawrence, R., Sullivan, D.: A free diferential Lie algebra for the interval. Preprint arXiv:math/0610949

  22. Majewski, M.: Rational homotopy models and uniqueness. Mem. Amer. Math. Soc. 682 (2000)

  23. Merkulov S.A.: Strong homotopy algebras of a Kähler manifold. Int. Math. Res. Not. 1999(3), 153–164 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Parent, P.-E., Tanré, D.: Lawrence–Sullivan models for the interval. Preprint arXiv:1007.1117

  25. Quillen D.G.: Rational homotopy theory. Ann. Math. (2) 90, 205–295 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schlessinger M., Stasheff J.: The Lie algebra structure of tangent cohomology and deformation theory. J. Pure Appl. Algebra 38(2–3), 313–322 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tanré, D.: Homotopie rationnelle: modèles de Chen, Quillen, Sullivan. Lecture Notes in Mathematics, vol. 1025. Springer, Berlin (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniceto Murillo.

Additional information

Dedicated to Yves Félix, on his 60th birthday

U. Buijs was supported by the MEC-FEDER grant MTM2010-15831 and a Juan de la Cierva research contract. J. J. Gutiérrez was supported by the MEC–FEDER grant MTM2010-15831 and by the Generalitat de Catalunya as a member of the team 2009 SGR 119. A. Murillo was supported by the MEC-FEDER grant MTM2010-18089 and the Junta de Andalucía grants FQM-213 and P07-FQM-2863.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buijs, U., Gutiérrez, J.J. & Murillo, A. Derivations, the Lawrence–Sullivan interval and the Fiorenza–Manetti mapping cone. Math. Z. 273, 981–997 (2013). https://doi.org/10.1007/s00209-012-1040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1040-x

Keywords

Mathematical Subject Classification (1991)

Navigation