Skip to main content
Log in

On the regularity of positive solutions of a class of Choquard type equations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

This paper is concerned with positive solutions of a class of Choquard type equations. Such equations are equivalent to integral systems involving the Bessel potential and the Riesz potential. By using two regularity lifting lemmas introduced by Chen and Li [2], we study the regularity for integrable solutions u. We first use the Hardy–Littlewood–Sobolev inequality to obtain an integrability result. Then, it is improved to \({u \in L^s(R^n)}\) for all \({s \in [1, \infty]}\) by an iteration. Next, we use the properties of the contraction map and the shrinking map to prove that u is Lipschitz continuous. Finally, we establish the smoothness of u by a bootstrap argument. Our technique can also be used to handle other integral systems involving the Riesz potential or the Bessel potential, such as the Hartree type equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen W., Li C.: Methods on Nonlinear Elliptic Equations. AIMS Book Ser. Differ. Equ. Dyn. Syst. 4 (2010)

  3. Chen W., Li C.: Regularity of solutions for a system of integral equations. Commun. Pure Appl. Anal. 4, 1–8 (2005)

    MathSciNet  Google Scholar 

  4. Chen W., Li C., Ou B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen W., Li C., Ou B.: Classification of solutions for a system of integral equations. Commun. Partial Differ. Equ. 30, 59–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York (1977)

    Book  MATH  Google Scholar 

  7. Ginibret J., Velo G.: On a class of non linear Schrödinger equations with non local interaction. Math. Z. 170, 109–136 (1980)

    Article  MathSciNet  Google Scholar 

  8. Han X., Lu G.: Regularity of solutions to an integral equation associated with Bessel potential. Commun. Pure Appl. Anal. 10, 1111–1119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hang F.: On the integral systems related to Hardy–Littlewood–Sobolev inequality. Math. Res. Lett. 14, 373–383 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Huang X., Li D., Wang L.: Existence and symmetry of positive solutions of an integral equation system. Math. Comput. Model. 52, 892–901 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang X., Li D., Wang L.: Symmetry and monotonicity of integral equation systems. Nonlinear Anal. Real World Appl. 12, 3515–3530 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin C., Li C.: Qualitative analysis of some systems of integral equations. Calc. Var. Partial Differ. Equ. 26, 447–457 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lei, Y., Li, C., Ma, C.: Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy–Littlewood–Sobolev system. Calc. Var. Partial Differ. Equ. doi:10.1007/s00526-011-0450-7

  14. Li Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. 6, 153–180 (2004)

    Article  MATH  Google Scholar 

  15. Lieb E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976/77)

    MathSciNet  Google Scholar 

  16. Lieb E.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lieb E., Simon B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  18. Lions P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lions, P.L.: The concentration-compactness principle in the calculus of variations, The locally compact case, I and II. Ann. Inst. H. Poincar., Anal. Nonlinaire. 1, 109–145, 223–283 (1984)

    Google Scholar 

  20. Liu S.: Regularity, symmetry, and uniqueness of some integral type quasilinear equations. Nonlinear Anal. 71, 1796–1806 (2009)

    Article  MATH  Google Scholar 

  21. Ma C., Chen W., Li C.: Regularity of solutions for an integral system of Wolff type. Adv. Math. 226, 2676–2699 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma F., Huang X., Wang L.: A classification of positive solutions of some integral systems. Integr. Equ. Oper. Theory 69, 393–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma L., Chen D.: Radial symmetry and uniqueness for positive solutions of a Schrödinger type system. Math. Comput. Model. 49, 379–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma L., Zhao L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Smoller J.: Shock Waves and Reaction–Diffusion Equations, Grundlehren der Mathematischen Wissenschaften, vol. 258. Springer-Verlag, New York (1983)

    Google Scholar 

  26. Stein E.M.: Singular Integrals and Differentiability Properties of Function, Princetion Math. Series, vol. 30. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  27. Ziemer W.: Weakly Differentiable Functions, Graduate Texts in Math., vol. 120. Springer-Verlag, New York (1989)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutian Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, Y. On the regularity of positive solutions of a class of Choquard type equations. Math. Z. 273, 883–905 (2013). https://doi.org/10.1007/s00209-012-1036-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1036-6

Keywords

Mathematics Subject Classification

Navigation