Skip to main content
Log in

Eisenstein series on rank 2 hyperbolic Kac–Moody groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We define Eisenstein series on rank 2 hyperbolic Kac–Moody groups over \(\mathbb {R}\), induced from quasi–characters. We prove convergence of the constant term and hence the almost everywhere convergence of the Eisenstein series. We define and calculate the degenerate Fourier coefficients. We also consider Eisenstein series induced from cusp forms and show that these are entire functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In an earlier version of this paper, an exponential decay in [21] was used. It was pointed out by Steve D. Miller that the rapid decay was enough to obtain our result.

References

  1. Braverman, A., Kazhdan, D.: Representations of affine Kac-Moody groups over local and global fields: a suvery of some recent results. arXiv:1205.0870

  2. Bump, D.: Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  3. Bump, D., Friedberg, S., Hoffstein, J.: On some applications of automorphic forms to number theory. Bull. Am. Math. Soc. (N.S.) 33(2), 171–1751996 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carbone, L.: Infinite dimensional Chevalley groups and Kac-Moody groups over \(\mathbb{Z}\) (2015) (Preprint)

  5. Carbone, L., Freyn, W., Lee, K.-H.: Dimensions of imaginary root spaces of hyperbolic Kac–Moody algebras. Contemp. Math. 623, 23–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carbone, L., Garland, H.: Existence of lattices in Kac–Moody groups over finite fields. Commun. Contemp. Math. 5(5), 813–867 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carbone, L., Garland, H., Gourevich, D., Liu, D.: Eisenstein series on arithmetic quotients of rank 2 Kac-Moody groups over finite fields (2013) (Preprint)

  8. Carbone, L., Garland, H., Lee, K.-H., Liu, D., Miller, S.D.: Convergence of Kac-Moody Eisenstein series (In preparation)

  9. De Medts, T., Gramlich, R., Horn, M.: Iwasawa decompositions of split Kac–Moody groups. J. Lie Theory 19(2), 311–337 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Feingold, A.J.: A hyperbolic GCM Lie algebra and the Fibonacci numbers. Proc. Am. Math. Soc. 80(3), 379–385 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feingold, A., Frenkel, I.: A hyperbolic Kac–Moody algebra and the theory of Siegel modular forms of genus \(2\). Math. Ann. 263(1), 87–144 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garland, H.: The arithmetic theory of loop algebras. J. Algebra 53(2), 480–551 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garland, H.: Eisenstein series on arithmetic quotients of loop groups. Math. Res. Lett. 6(5–6), 723–733 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garland, H.: Certain Eisenstein Series on Loop Groups: Convergence and the Constant Term, Algebraic Groups and Arithmetic, pp. 275–319. Tata Institute of Fundamental Research, Mumbai (2004)

  15. Garland, H.: Absolute convergence of Eisenstein series on loop groups. Duke Math. J. 135(2), 203–260 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garland, H.: Eisenstein series on loop groups: Maass-Selberg relations. I. In: Algebraic Groups and Homogeneous Spaces, pp. 275–300. Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res. Mumbai (2007)

  17. Garland, H.: Eisenstein series on loop groups: Maass–Selberg relations. II. Am. J. Math. 129(3), 723–784 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garland, H.: Eisenstein series on loop groups: Maass–Selberg relations. III. Am. J. Math. 129(5), 1277–1353 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garland, H.: Eisenstein series on loop groups: Maass-Selberg relations IV. In: Huang, Y.-Z., Misra K.C. (eds.) Lie algebras, vertex operator algebras and their applications, Contemp. Math., vol. 442, pp. 115–158. American Mathematical Society, Providence (2007)

  20. Garland, H.: On extending the Langlands–Shahidi method to arithmetic quotients of loop groups. In: Adams, J., Lian, B., Sahi S. (eds.) Representation theory and mathematical physics, Contemp. Math., vol. 557, pp. 151–167. American Mathematical Society, Providence (2011)

  21. Garland, H., Miller, S.D., Patnaik, M.M.: Entirety of cuspidal Eisenstein series on loop groups. arXiv:1304.4913v1

  22. Kac, V.G.: Infinite Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  23. Kang, S.-J., Melville, D.J.: Rank 2 symmetric hyperbolic Kac–Moody algebras. Nagoya Math. J. 140, 41–75 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kapranov, M.: The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups. arXiv:math.AG/0001005

  25. Kumar, S.: Kac–Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics, vol. 204. Birkhäuser Boston Inc, Boston (2002)

    Book  MATH  Google Scholar 

  26. Langlands, R.P.: Euler Products, Yale Mathematical Monographs 1. Yale University Press, New Haven (1971)

    Google Scholar 

  27. Langlands, R.P.: On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Mathematics, vol. 544. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  28. Lee, K.-H., Lombardo, P.: Eisenstein series on affine Kac–Moody groups over function fields. Tran. Am. Math. Soc. 366(4), 2121–2165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lepowsky, J., Moody, R.V.: Hyperbolic Lie algebras and quasiregular cusps on Hilbert modular surfaces. Math. Ann. 245(1), 63–88 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, D.: Eisenstein series on loop groups. Tran. Am. Math. Soc. 367(3), 2079–2135 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miller, S.D., Schmid, W.: On the rapid decay of cuspidal automorphic forms. Adv. Math. 231(2), 940–964 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moeglin, C., Waldspurger, J.-L.: Spectral Decomposition and Eisenstein Series, pp. xxvii+ 335. Cambridge University Press, Cambridge, New York, and Melbourne. ISBN 0-521-41893-3 (1995)

  33. Patnaik, M.M.: Geometry of Loop Eisenstein Series, Ph.D. thesis, Yale University (2008)

  34. Shahidi, F.: Infinite dimensional groups and automorphic \(L\)-functions. Pure Appl. Math. Q. 1(3), 683–699 (2005). (part 2)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tits, J.: Resume de Cours—Theorie des Groupes, Annuaire du College de France, pp. 75–87 (1980–1981)

Download references

Acknowledgments

We thank the referee for many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Hwan Lee.

Additional information

L. Carbone: This work was supported in part by NSF Grant #DMS–1101282. K.-H. Lee: This work was partially supported by a Grant from the Simons Foundation (#318706). D. Liu This work was partially supported by NSFC #11201384.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbone, L., Lee, KH. & Liu, D. Eisenstein series on rank 2 hyperbolic Kac–Moody groups. Math. Ann. 367, 1173–1197 (2017). https://doi.org/10.1007/s00208-016-1428-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1428-8

Mathematics Subject Classification

Navigation