Skip to main content
Log in

Completeness of compact Lorentzian manifolds with abelian holonomy

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We address the problem of finding conditions under which a compact Lorentzian manifold is geodesically complete, a property, which always holds for compact Riemannian manifolds. It is known that a compact Lorentzian manifold is geodesically complete if it is homogeneous, or has constant curvature, or admits a time-like conformal vector field. We consider certain Lorentzian manifolds with abelian holonomy, which are locally modelled by the so called pp-waves, and which, in general, do not satisfy any of the above conditions. We show that compact pp-waves are universally covered by a vector space, determine the metric on the universal cover, and prove that they are geodesically complete. Using this, we show that every Ricci-flat compact pp-wave is a plane wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, in [12] Carrière proved a much more general result for affine manifolds. A direct proof for the flat case was given in [53]. However, this proof has gaps as it was pointed out in [41].

  2. In the following we will consider compact manifolds of this type. We are aware that for compact manifolds the term wave might not be appropriate, but we use this term since it is established in the literature for manifolds with the given curvature properties. Later we will see that an appropriate name would be screen flat, but this term has other obvious problems.

  3. We thank Wolfgang Globke for pointing us to this reference.

  4. One can also argue in the following way: From Proposition 5 we know that \(\widetilde{V}\) is a parallel vector field on the Riemannian manifold \((\widetilde{\mathcal{N}},\hat{h}) \) but also that \(\widetilde{V}\) as a lift of the complete vector field V is complete. Hence, as \(\widetilde{\mathcal{N}}\) is simply connected, the flow of \(\widetilde{V}\) separates a line \(\mathbb {R}\) from \(\widetilde{\mathcal{N}}\) with orthogonal complement being the leaves \(\hat{\mathcal{S}}\) of the integrable distribution \(\hat{\mathbb {S}}\), again proving the lemma.

  5. In fact, during the preparation of the paper we learned that Lemma 8 follows from stronger results by Candela et al. [10, Theorems 1 and 2]. However, for the sake of being self-contained we include a proof of the lemma. For further results and comments see [11, 46].

  6. In [34] we called these Lorentzian manifolds pr-waves for plane fronted with recurrent rays.

References

  1. Baum, H., Lärz, K., Leistner, T.: On the full holonomy group of Lorentzian manifolds. Math. Z. 277(3–4), 797–828 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bérard-Bergery, L., Ikemakhen, A.: On the holonomy of Lorentzian manifolds. In: Differential Geometry: Geometry in Mathematical Physics and Related Topics (Los Angeles, CA, 1990). Proceedings of Symposium in Pure Mathematics, vol. 54, pp. 27–40. American Mathematical Society, Providence (1993)

  3. Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)

    MathSciNet  MATH  Google Scholar 

  4. Berger, M.: Les espaces symétriques noncompacts. Ann. Sci. École Norm. Sup. 3(74), 85–177 (1957)

    MATH  Google Scholar 

  5. Blanco, O.F., Sánchez, M., Senovilla, J.M.M.: Structure of second-order symmetric Lorentzian manifolds. J. Eur. Math. Soc. (JEMS) 15(2), 595–634 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brinkmann, H.W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94(1), 119–145 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cahen, M., Wallach, N.: Lorentzian symmetric spaces. Bull. Am. Math. Soc. 79, 585–591 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calabi, E., Markus, L.: Relativistic space forms. Ann. Math. 2(75), 63–76 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candela, A.M., Flores, J.L., Sánchez, M.: On general plane fronted waves. Geodesics. Gen. Relativ. Gravit. 35(4), 631–649 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candela, A.M., Romero, A., Sánchez, M.: Completeness of the trajectories of particles coupled to a general force field. Arch. Ration. Mech. Anal. 208(1), 255–274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candela, A.M., Romero, A., Sánchez, M.: Remarks on the completeness of trajectories of accelerated particles in Riemannian manifolds and plane waves. In: Folio, D. (ed.) International Meeting on Differential Geometry (Córdoba, November 15–17, 2010), pp. 27–38 (2013)

  12. Carrière, Y.: Autour de la conjecture de L. Markus sur les variétés affines. Invent. Math. 95(3), 615–628 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Conlon, L.: Differentiable Manifolds, 2nd edn. Birkhäuser, Boston (2008)

  14. Derdziński, A., Roter, W.: On compact manifolds admitting indefinite metrics with parallel Weyl tensor. J. Geom. Phys. 58(9), 1137–1147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Derdziński, A., Roter, W.: The local structure of conformally symmetric manifolds. Bull. Belg. Math. Soc. Simon Stevin 16(1), 117–128 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Derdziński, A., Roter, W.: Compact pseudo-Riemannian manifolds with parallel Weyl tensor. Ann. Global Anal. Geom. 37(1), 73–90 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Di Scala, A.J., Olmos, C.: The geometry of homogeneous submanifolds of hyperbolic space. Math. Z. 237(1), 199–209 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dumitrescu, S., Zeghib, A.: Géométries lorentziennes de dimension 3: classification et complétude. Geom. Dedic. 149, 243–273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ehlers, J., Kundt, W.: Exact solutions of the gravitational field equations. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 49–101. Wiley, New York (1962)

    Google Scholar 

  20. Fischer, M.: Lattices of oscillator groups (2013). ArXiv e-prints

  21. Flores, J.L., Sánchez, M.: On the geometry of pp-wave type spacetimes. In: Analytical and Numerical Approaches to Mathematical Relativity. Lecture Notes in Physics, vol. 692, pp. 79–98. Springer, Berlin (2006)

  22. Galaev, A.S.: Metrics that realize all Lorentzian holonomy algebras. Int. J. Geom. Methods Mod. Phys. 3(5–6), 1025–1045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Galaev, A.S., Leistner, T.: Holonomy groups of Lorentzian manifolds: classification, examples, and applications. In: Recent Developments in Pseudo-Riemannian Geometry. ESI Lectures in Mathematics and Physics, pp. 53–96. European Mathematical Society, Zürich (2008)

  24. Globke, W., Leistner, T.: Locally homogeneous pp-waves (2014, preprint). arXiv:1410.3572

  25. Hull, C.M.: Exact pp-wave solutions of 11-dimensional supergravity. Phys. Lett. B 139(1–2), 39–41 (1984)

    MathSciNet  Google Scholar 

  26. Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford Univerity Press, New York (2000)

    MATH  Google Scholar 

  27. Kamishima, Y.: Completeness of Lorentz manifolds of constant curvature admitting Killing vector fields. J. Differ. Geom. 37(3), 569–601 (1993)

    MathSciNet  MATH  Google Scholar 

  28. Kath, I., Olbrich, M.: Compact quotients of Cahen–Wallach spaces (2015, preprint). arXiv:1501.01474

  29. Klingler, B.: Complétude des variétés lorentziennes à courbure constante. Math. Ann. 306(2), 353–370 (1996)

    Article  MathSciNet  Google Scholar 

  30. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 2. Interscience Wiley, New York (1969)

    MATH  Google Scholar 

  31. Kulkarni, R.S.: Proper actions and pseudo-Riemannian space forms. Adv. Math. 40(1), 10–51 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lärz, K.: Global aspects of holonomy in pseudo-Riemannian geometry. Ph.D. thesis, Humboldt-Universität zu Berlin (2011). http://edoc.hu-berlin.de/dissertationen/

  33. Leistner, T.: Lorentzian manifolds with special holonomy and parallel spinors. Rend. Circ. Mat. Palermo (2) Suppl. (69), 131–159 (2002)

  34. Leistner, T.: Screen bundles of Lorentzian manifolds and some generalisations of pp-waves. J. Geom. Phys. 56(10), 2117–2134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Leistner, T.: On the classification of Lorentzian holonomy groups. J. Differ. Geom. 76(3), 423–484 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Marsden, J.: On completeness of homogeneous pseudo-Riemannian manifolds. Indiana Univ. J. 22, 1065–1066 (1972/73)

  37. Medina, A., Revoy, P.: Les groupes oscillateurs et leurs réseaux. Manuscr. Math. 52(1–3), 81–95 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Milnor, J.: Morse Theory. Based on Lecture Notes by M. Spivak and R. Wells. Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton (1963)

  39. O’Neill, B.: Semi-Riemannian Geometry. Academic Press, London (1983)

  40. Palais, R.S.: A global formulation of the Lie theory of transformation groups. Mem. Am. Math. Soc. 22:iii + 123 (1957)

  41. Romero, A., Sánchez, M.: On the completeness of geodesics obtained as a limit. J. Math. Phys. 34(8), 3768–3774 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Romero, A., Sánchez, M.: On completeness of certain families of semi-Riemannian manifolds. Geom. Dedic. 53(1), 103–117 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Romero, A., Sánchez, M.: On completeness of compact Lorentzian manifolds. In: Geometry and Topology of Submanifolds, VI (Leuven, 1993/Brussels, 1993), pp. 171–182. World Science Publications, River Edge (1994)

  44. Romero, A., Sánchez, M.: Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field. Proc. Am. Math. Soc. 123(9), 2831–2833 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sánchez, M.: Structure of Lorentzian tori with a Killing vector field. Trans. Am. Math. Soc. 349(3), 1063–1080 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sánchez, M.: On the completeness of trajectories for some mechanical systems. In: Geometry, Mechanics and Dynamics: The Legacy of Jerry Marsden. Fields Institute Communications Series (2013)

  47. Schimming, R.: Riemannsche Räume mit ebenfrontiger und mit ebener Symmetrie. Math. Nachr. 59, 128–162 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  48. Schliebner, D.: On the full holonomy of Lorentzian manifolds with parallel Weyl tensor (2012, preprint). arXiv:1204.5907

  49. Schliebner, D.: On Lorentzian manifolds with highest first Betti number. Annal. de l’Inst. Fourier (2015, to appear). arXiv:1311.6723

  50. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence (2012)

  51. Tricerri, F., Vanhecke, L.: Homogeneous Structures on Riemannian Manifolds. London Mathematical Society Lecture Note Series, vol. 83. Cambridge University Press, Cambridge (1983)

  52. Wolf, J.A.: Spaces of Constant Curvature. McGraw-Hill Book Co., New York (1967)

    MATH  Google Scholar 

  53. Yurtsever, U.: A simple proof of geodesical completeness for compact space-times of zero curvature. J. Math. Phys. 33(4), 1295–1300 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Helga Baum and Miguel Sánchez for helpful discussions and comments on the first draft of the paper. We also thank the referees for valuable comments and Ines Kath for alerting us to the implications our result has for locally symmetric spaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Leistner.

Additional information

This work was supported by the Group of Eight Australia and the German Academic Exchange Service through the Go8-DAAD Joint Research Co-operation Scheme. T. Leistner acknowledges support from the Australian Research Council via the Grants FT110100429 and DP120104582. D. Schliebner was funded by the Berlin Mathematical School.

Dedicated to Helga Baum on the occasion of her 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leistner, T., Schliebner, D. Completeness of compact Lorentzian manifolds with abelian holonomy. Math. Ann. 364, 1469–1503 (2016). https://doi.org/10.1007/s00208-015-1270-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1270-4

Mathematics Subject Classification

Navigation