Skip to main content
Log in

Coherent sheaves on quiver varieties and categorification

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We construct geometric categorical \(\mathfrak g \) actions on the derived category of coherent sheaves on Nakajima quiver varieties. These actions categorify Nakajima’s construction of Kac–Moody algebra representations on the K-theory of quiver varieties. We define an induced affine braid group action on these derived categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Here we are using the Krull–Schmidt property of our categories. For more details, see [5], section 4.1.

References

  1. Braverman, A., Maulik, D., Okounkov, A.: Quantum cohomology of the Springer resolution. Adv. Math. 227(1), 421–458 (2011). (arXiv:1001.0056)

  2. Cautis, S.: Equivalences and stratified flops. Compositio Math. 148, 185–209 (2012). (arXiv: 0909.0817)

    Google Scholar 

  3. Cautis, S.: Rigidity in higher, representation theory (2013) (in preparation)

  4. Cautis, S., Kamnitzer, J.: Khovanov homology via derived categories of coherent sheaves I, \({\mathfrak{sl}}_2\) case. Duke Math. J. 142(3), 511–588 (2008). (math.AG/0701194)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cautis, S., Kamnitzer, J.: Braiding via geometric categorical Lie algebra actions. Compositio Math. 148(2), 464–506 (2012). (arXiv:1001.0619)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cautis, S., Dodd, C., Kamnitzer, J.: Categorical actions on quiver varieties: from \({\cal D}\)-modules to coherent sheaves (2013) (in preparation)

  7. Cautis, S., Kamnitzer, J., Licata, A.: Categorical geometric skew Howe duality. Inventiones Math. 180(1), 111–159 (2010). (math.AG/0902.1795)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cautis, s, Kamnitzer, J., Licata, A.: Coherent sheaves and categorical \({\mathfrak{sl}}_2\) actions. Duke math. J. 154, 135–179 (2010). (math.AG/0902.1796)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cautis, S., Kamnitzer, J., Licata, A.: Derived equivalences for cotangent bundles of Grassmannians via categorical \({\mathfrak{sl}}_2\) actions, J. Reine Angew. Math. 675, 53–99 (2013). (math.AG/0902.1797)

    Google Scholar 

  10. Cautis, S., Lauda, A.: Implicit structure in 2-representations of quantum groups, arXiv:1111.1431

  11. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkäuser, Boston (1997)

    MATH  Google Scholar 

  12. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \({\mathfrak{sl}}_2\)-categorification. Ann. Math. 167, 245–298 (2008). (math.RT/0407205)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feingold, A.J., Frenkel, I.B.: A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2. Math. Ann. 263, 87–144 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feingold, A.J., Kleinschmidt, A., Nicolai, H.: Hyperbolic Weyl groups and the four normed division algebras. J. Algebra 322(4), 1295–1339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gautum, S., Toledano-Laredo, V.: Monodromy of the trigonometric Casimir connection for \({\mathfrak{sl}}_2\). (arXiv:1109.2367)

  16. Huybrechts, D.: Fourier-Mukai Transforms in Algebraic Geometry. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  17. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups I. Represent. Theory 13, 309–347 (2009). (math.QA/0803.4121)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. 363, 2685–2700 (2011). (math.QA/0804.2080)

    Google Scholar 

  19. Khovanov, M.: A diagrammatic approach to categorification of quantum groups III. Quantum Topol. 1(1), 1–92 (2010). (math.QA/0807.3250)

    Google Scholar 

  20. Khovanov, M., Seidel, P.: Quivers, Floer cohomology, and braid group actions. J. Am. Math. Soc. 15, 203–271 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khovanov, M., Thomas, R.: Braid cobordisms, triangulated categories, and flag varieties. HHA 9, 19–94 (2007). (math.QA/0609335)

    Google Scholar 

  22. Maffei, A.: Quiver varieties of type A. Comment. Math. Helv. 80(1), 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Malkin, A.: Tensor product varieties and crystals: the \(ADE\) case. Duke Math. J. 116(3), 477–524 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76, 356–416 (1994)

    Article  MathSciNet  Google Scholar 

  25. Nakajima, H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515–560 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nakajima, H.: Lectures on Hilbert schemes of points on surfaces. University Lecture Series, vol. 18. pp. xii+132, American Mathematical Society, Providence, ISBN: 0-8218-1956-9 (1999)

  27. Nakajima, H.: Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145–238 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nakajima, H.: Quiver varieties and tensor products. Invent. Math. 146(2), 399–449 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Riche, S.: Geometric braid group action on derived category of coherent sheaves. Represent. Theory 12, 131–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rouquier, R.: 2-Kac-Moody algebras. (math.RT/0812.5023)

  31. Thomason, R.W.: The classification of triangulated subcategories. Compositio Mathematica 105, 1–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Toledano-Laredo, V.: The trigonometric Casimir connection of a simple Lie algebra. J. Algebra 329, 286–327 (2011). (arXiv:1003.2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Varagnolo, M., Vasserot, E.: Canonical bases and Khovanov-Lauda algebras. J. Reine Angew. Math. 659, 67–100 (2011). (arXiv:0901.3992)

    Google Scholar 

  34. Webster, B.: Knot invariants and higher representation theory I. (arXiv:1001.2020)

  35. Zheng, H.: Categorification of integrable representations of quantum groups. (arXiv:0803.3668)

Download references

Acknowledgments

We would like to thank Roman Bezrukavnikov, Alexander Braverman, Christopher Dodd, Hiraku Nakajima, and Raphael Rouquier for helpful discussions. S.C. was supported by NSF Grant 0801939/0964439 and J.K. by NSERC. A.L. would also like to thank the Max Planck Institute in Bonn for support during the 2008–2009 academic year.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Kamnitzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cautis, S., Kamnitzer, J. & Licata, A. Coherent sheaves on quiver varieties and categorification. Math. Ann. 357, 805–854 (2013). https://doi.org/10.1007/s00208-013-0921-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0921-6

Navigation