Skip to main content
Log in

Partial regularity at the first singular time for hypersurfaces evolving by mean curvature

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

An Erratum to this article was published on 05 November 2015

Abstract

In this paper, we consider smooth, properly immersed hypersurfaces evolving by mean curvature in some open subset of   \(\mathbb R ^{n+1}\) on a time interval \((0, t_0)\). We prove that \(p\)-integrability with \(p\ge 2\) for the second fundamental form of these hypersurfaces in some space–time region \(B_R(y)\times (0, t_0)\) implies that the \(\mathcal H ^{n+2-p}\)-measure of the first singular set vanishes inside \(B_R(y)\). For \(p=2\) and \(n=2\), this was established by Han and Sun. Our result furthermore generalizes previous work of Xu, Ye and Zhao and of Le and Sesum for \(p\ge n+2\), in which case the singular set was shown to be empty. By a theorem of Ilmanen, our integrability condition is satisfied for \(p=2\) and \(n=2\,\) if the initial surface has finite genus. Thus, the first singular set has zero \(\mathcal H ^2\)-measure in this case. This is the conclusion of Brakke’s main regularity theorem for the special case of surfaces, but derived without having to impose the area continuity and unit density hypothesis. It follows from recent work of Head and of Huisken and Sinestrari that for the flow of closed, \(k\)-convex hypersurfaces, that is hypersurfaces whose sum of the smallest \(k\) principal curvatures is positive, our integrability criterion holds with exponent \(p=n+3-k-\alpha \) for all small \(\alpha >0\) as long as \(1\le k\le n-1\). Therefore, the first singular set of such solutions is at most \((k-1)\)-dimensional, which is an optimal estimate in view of some explicit examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschuler, S., Angenent, S., Giga, Y.: Mean curvature flow through singularities for surfaces of rotation. J. Geom. Anal. 5(3), 293–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angenent, S.B., Chopp, D.L., Ilmanen, T.: A computed example of nonuniqueness of mean curvature flow in \(\mathbb{R}^3\). Commun. Partial Differ. Equ. 20, 1937–1958 (1995)

    Article  MathSciNet  Google Scholar 

  3. Brakke, K.A.: The motion of a surface by its mean curvature. Mathematical Notes. Princeton University Press, Princeton (1978)

    Google Scholar 

  4. Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33, 749–786 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Choi, H.I., Schoen, R.: The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci-curvature. Invent. math. 81, 387–394 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chopp, D.: Numerical computation of self-similar solutions for mean curvature flow. Exp. Math. 3, 1–16 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ecker, K.: On regularity for mean curvature flow of hypersurfaces. Calc. Var. 3, 107–126 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ecker, K.: Regularity theory for mean curvature flow. In: Progress in nonlinear differential equations and their applications, Birkhäuser (2004)

  9. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 130, 453–471 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ecker, K., Huisken, G.: Interior estimates for hypersurfaces moving by mean curvature. Invent. math. 105, 547–569 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature I. J. Differ. Geom. 33, 635–681 (1991)

    MathSciNet  MATH  Google Scholar 

  12. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature II. Trans. Am. Math. Soc. 330(1), 321–332 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature III. J. Geom. Anal. 2, 121–150 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Head, J.: PhD thesis 2011, Max-Planck Institut für Gravitationsphysik (Albert Einstein Institut), Potsdam, Germany (2011)

  15. Han, X., Sun, J.: An \(\varepsilon \)-regularity theorem for the mean curvature flow. arxiv: 1102.4800 (2011)

  16. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20, 237–266 (1984)

    MathSciNet  MATH  Google Scholar 

  17. Huisken, G.: Asymptotic behaviour for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Huisken, G., Sinestrari, C.: Mean curvature flow singularities for mean-convex surfaces. Calc. Var. PDE 8, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huisken, G., Sinestrari, C.: Mean curvature flow with surgery of two-convex hypersurfaces. Invent. Math. 175(1), 137–221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ilmanen, T.: Singularities of mean curvature flow of surfaces (1995). http://www.math.ethz.ch/ilmanen/papers/pub.html

  21. Ilmanen, T.: Lectures on Mean Curvature Flow and Related Equations, 1995 (revised 1998). http://www.math.ethz.ch/ilmanen/papers/pub.html

  22. Lieberman, G.M.: Second order parabolic differential equations. World Scientific, Singapore (2005)

    Google Scholar 

  23. Le, N.Q., Sesum, N.: On the extension of the mean curvature flow. Math. Zeitschrift 267, 583–604 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Le, N.Q., Sesum, N.: The mean curvature at the first singular time of the mean curvature flow. Annales de l’Institut Henri Poincaré 26(6), 1441–1459 (2010)

    MathSciNet  Google Scholar 

  25. Ladyzhenskaya, O.A., Solonnikov, V.A., Uraltseva, N.N.: Linear and quasilinear equations of parabolic type. Transl. II Ser. Am. Math. Soc. 23, 191–194 (1968)

    Google Scholar 

  26. Moser, J.: A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17, 101–134 (1964)

    Article  MATH  Google Scholar 

  27. Michael, J.H., Simon, L.M.: Sobolev and mean-value inequalities on generalized submanifolds of \(\mathbb{R}^n\). Commun. Pure Appl. Math. 26, 361–379 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nakauchi, N.: A concentration phenomenon in mean curvature flow. Manuscr. Math. 78, 129–147 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Simon, L.M.: Lectures on geometric measure theory. In: Proceedings of the CMA, vol. 3 (1983)

  30. Schoen, R.M.: Handwritten lecture notes. Berkeley (1975)

  31. Struwe, M.: On the evolution of harmonic maps in higher dimensions. J. Differ. Geom. 28, 485–502 (1988)

    MathSciNet  MATH  Google Scholar 

  32. White, B.: Stratification of minimal surfaces, mean curvature flows and harmonic maps. J. Reine und Angewandte Math. 488, 1–35 (1997)

    MATH  Google Scholar 

  33. White, B.: The size of the singular set in mean curvature flow of mean-convex sets. J. Am. Math. Soc 13(3), 665–695 (2000)

    Article  MATH  Google Scholar 

  34. Xu, H.W., Ye, F., Zhao, E.T.: Extend mean curvature flow with finite integral curvature. Asian J. Math. (to appear in, 2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ecker.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00208-015-1310-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ecker, K. Partial regularity at the first singular time for hypersurfaces evolving by mean curvature. Math. Ann. 356, 217–240 (2013). https://doi.org/10.1007/s00208-012-0853-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0853-6

Keywords

Navigation