Skip to main content
Log in

The singular set of mean curvature flow with generic singularities

  • Published:
Inventiones mathematicae Aims and scope

Abstract

A mean curvature flow starting from a closed embedded hypersurface in \(\mathbf{R}^{n+1}\) must develop singularities. We show that if the flow has only generic singularities, then the space-time singular set is contained in finitely many compact embedded \((n-1)\)-dimensional Lipschitz submanifolds plus a set of dimension at most \(n-2\). If the initial hypersurface is mean convex, then all singularities are generic and the results apply. In \(\mathbf{R}^3\) and \(\mathbf{R}^4\), we show that for almost all times the evolving hypersurface is completely smooth and any connected component of the singular set is entirely contained in a time-slice. For 2 or 3-convex hypersurfaces in all dimensions, the same arguments lead to the same conclusion: the flow is completely smooth at almost all times and connected components of the singular set are contained in time-slices. A key technical point is a strong parabolic Reifenberg property that we show in all dimensions and for all flows with only generic singularities. We also show that the entire flow clears out very rapidly after a generic singularity. These results are essentially optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For many of our results (though not all) one can allow the tangent flow to have multiplicity greater than one (cf. [5]), however this higher multiplicity does not occur in the most important cases.

  2. See also Schulze [43], for uniqueness at smooth closed singularities.

  3. The map can be taken to be a graph over a subset of a time-slice; this is connected to Theorem 1.2.

  4. See, for instance [7, 19, 25, 36, 37, 40, 45].

  5. See, for instance [47].

  6. See [10, 18, 28], section 2.3 of [38, 41, 42, 44], and [47].

  7. See, for instance, the remarks on page 258 of [44].

  8. In fact, one can take \(f(r)\approx (\log |\log r|)^{-\alpha }\) (\(\alpha >0\)).

  9. Ilmanen and White extended the monotonicity to the case where \(M_t\) is a Brakke flow.

  10. This is a different convention than in [12] where we used k for the dimension of the spherical factor.

  11. Cf. lemma \({\text {I}}.1.2\) in [13] and section \({\text {III}}.2\) in [14].

  12. The function u may be multi-valued, but the projection from S to \(\{ t=0 \}\) is a finite-to-one covering map.

References

  1. Altschuler, S., Angenent, S.B., Giga, Y.: Mean curvature flow through singularities for surfaces of rotation. J. Geom. Anal. 5(3), 293–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almgren, Jr., F.J.: Q-valued functions minimizing dirichlet’s integral and the regularity of area minimizing rectiable currents up to codimension two (preprint)

  3. Andrews, B.: Noncollapsing in mean-convex mean curvature flow. Geom. Topol. 16(3), 1413–1418 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bamler, R.: Long-time behavior of 3 dimensional Ricci flow—introduction (preprint)

  5. Bernstein, J., Wang, L.: A remark on a uniqueness property of high multiplicity tangent flows in dimension three (preprint) http://arxiv.org/abs/1402.6687

  6. Brakke, K.: The Motion of a Surface by its Mean Curvature, Mathematical Notes, vol. 20. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  7. Cheeger, J., Colding, T.H., Tian, G.: Constraints on singularities under Ricci curvature bounds. C. R. Acad. Sci. Paris Sér. I Math 324(6), 645–649 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33, 749–786 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Colding, T.H., Ilmanen, T., Minicozzi II, W.P.: Rigidity of generic singularities of mean curvature flow. Publ. Math. IHES 121, 363–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colding, T.H., Kleiner, B.: Singularity structure in mean curvature flow of mean-convex sets. Electron. Res. Announc. Am. Math. Soc. 9, 121–124 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colding, T.H., Minicozzi II, W.P.: Generic mean curvature flow I; generic singularities. Ann. Math. 175(2), 755–833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colding, T.H., Minicozzi II, W.P.: Uniqueness of blowups and Łojasiewicz inequalities. Ann. Math. 182(1), 221–285 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colding, T.H., Minicozzi II, W.P.: The space of embedded minimal surfaces of fixed genus in a 3-manifold. IV. Locally simply connected. Ann. Math. (2) 160(2), 573–615 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colding, T.H., Minicozzi II, W.P.: The space of embedded minimal surfaces of fixed genus in a 3-manifold. V. Finite genus. Ann. Math. 181, 1–153 (2015)

    Article  MATH  Google Scholar 

  15. Colding, T.H., Minicozzi II, W.P.: Łojasiewicz inequalities and applications, Surveys in Differential Geometry, vol. 19 Regularity and evolution of nonlinear equations Essays dedicated to Richard Hamilton, Leon Simon, and Karen Uhlenbeck, pp. 63–82. International Press (2015)

  16. Colding, T.H., Minicozzi II, W.P.: Differentiability of the arrival time (preprint). arXiv:1501.07899

  17. Colding, T.H., Minicozzi II, W.P., Pedersen, E.K.: Mean curvature flow. Bull. AMS 52(2), 297–333 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. David, G., Kenig, C., Toro, T.: Asymptotically optimally doubling measures and Reifenberg flat sets with vanishing constant. Commun. Pure Appl. Math. 54(4), 385–449 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. De Lellis, C.: Rectifiable sets, densities and tangent measures. European Mathematical Society (EMS), Zurich Lectures in Advanced Mathematics, Zürich (2008)

  20. Ecker, K.: Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and their Applications, vol. 57. Birkhäuser Boston, Inc., Boston (2004)

    Google Scholar 

  21. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature I. J. Differ. Geom. 33(3), 635–681 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature II. Trans. Am. Math. Soc. 330(1), 321–332 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature III. J. Geom. Anal. 2(2), 121–150 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature IV. J. Geom. Anal. 5(1), 77–114 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)

    Google Scholar 

  26. Federer, H.: The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension. Bull. Am. Math. Soc. 76, 767–771 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haslhofer, R., Kleiner, B.: Mean curvature flow of mean convex hypersurfaces (preprint). arXiv:1304.0926

  28. Hong, G., Wang, L.: A geometric approach to the topological disk theorem of Reifenberg. Pac. J. Math. 233(2), 321–339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1), 285–299 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Huisken, G.: Local and global behaviour of hypersurfaces moving by mean curvature. Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), pp. 175–191, Proc. Sympos. Pure Math., vol. 54, Part 1. Amer. Math. Soc., Providence (1993)

  31. Huisken, G., Sinestrari, C.: Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math. 183(1), 45–70 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huisken, G., Sinestrari, C.: Mean curvature flow singularities for mean convex surfaces. Calc. Var. Partial Differ. Equ. 8, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Huisken, G., Sinestrari, C.: Mean curvature flow with surgeries of two-convex hypersurfaces. Invent. Math. 175(1), 137–221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ilmanen, T.: Singularities of mean curvature flow of surfaces (1995, preprint). http://www.math.ethz.ch/~/papers/pub.html

  35. Ilmanen, T.: Elliptic regularization and partial regularity for motion by mean curvature. Mem. Amer. Math. Soc. 520 (1994)

  36. Li, J., Tian, G.: The blow-up locus of heat flows for harmonic maps. Acta Math. Sin. (Engl. Ser.) 16(1), 29–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lin, F.-H., Wang, C.-Y.: Harmonic and quasi-harmonic spheres. III. Rectifiability of the parabolic defect measure and generalized varifold flows. Ann. Inst. H. Poincaré Anal. Non Lin. 19(2), 209–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lin, F.-H., Yang, X.: Geometric measure theory—an introduction. Advanced Mathematics (Beijing/Boston), vol. 1. Science Press Beijing, Beijing; International Press, Boston (2002)

  39. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Preiss, D.: Geometry of measures in \({ R}^n\): distribution, rectifiability, and densities. Ann. Math. (2) 125(3), 537–643 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  41. Preiss, D., Tolsa, X., Toro, T.: On the smoothness of Hölder-doubling measures. Calc. Var. Partial Differ. Equ. 35, 339–363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Reifenberg, E.R.: Solution of the Plateau Problem for m-dimensional surfaces of varying topological type. Acta Math. 104, 1–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schulze, F.: Uniqueness of compact tangent flows in mean curvature flow. J. Reine Angew. Math. 690, 163–172 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Simon, L.: Rectifiability of the singular sets of multiplicity 1 minimal surfaces and energy minimizing maps. Surveys Differ. Geom. 2, 246–305 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Simon, L.: Rectifiability of the singular set of energy minimizing maps. Calc. Var. Partial Differ. Equ. 3(1), 1–65 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Soner, H., Souganidis, P.: Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Commun. Partial Differ. Equ. 18(5–6), 859–894 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  47. Toro, T.: Doubling and flatness: geometry of measures. Notices AMS 44, 1087–1094 (1997)

    MathSciNet  MATH  Google Scholar 

  48. White, B.: The nature of singularities in mean curvature flow of mean-convex sets. J. Am. Math. Soc. 16(1), 123–138 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. White, B.: The size of the singular set in mean curvature flow of mean-convex sets. J. Am. Math. Soc. 13, 665–695 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. White, B.: Evolution of curves and surfaces by mean curvature. In: Proceedings of the International Congress of Mathematicians, vol. I (Beijing, 2002), pp. 525–538

  51. White, B.: Partial regularity of mean-convex hypersurfaces flowing by mean curvature, Int. Math. Res. Notices, pp. 185–192 (1994)

  52. White, B.: Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488, 1–35 (1997)

    MathSciNet  MATH  Google Scholar 

  53. White, B.: Subsequent singularities in mean-convex mean curvature flow (2011). arXiv:1103.1469

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. Minicozzi II.

Additional information

The authors were partially supported by NSF Grants DMS 1404540, DMS 11040934, DMS 1206827, and NSF FRG Grants DMS 0854774 and DMS 0853501.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colding, T.H., Minicozzi, W.P. The singular set of mean curvature flow with generic singularities. Invent. math. 204, 443–471 (2016). https://doi.org/10.1007/s00222-015-0617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0617-5

Keywords

Navigation