Skip to main content
Log in

A characterization of varieties whose universal cover is the polydisk or a tube domain

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this article we give necessary and sufficient conditions, in terms of certain tensors called semispecial tensors, respectively slope zero tensors, in order that the universal covering of a complex projective manifold be a symmetric domain of tube type. As an application, we give precisions of a result of Kazhdan showing that a Galois conjugate of such a manifold has the same universal covering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We are indebted to Pascal Dingoyan for providing this reference.

  2. We are indebted to Gang Tian for providing this reference.

  3. They however took for granted Yau’s wrong assertion, that if \(S^m (V_j)\) is not stable, then it should have a direct factor of rank one having the same slope.

References

  1. Aristidou, M., Davidson, M., Ólafsson, G.: Differential recursion relations for Laguerre functions on symmetric cones. Bull. Sci. Math. 130(3), 246–263 (2000)

    Article  Google Scholar 

  2. Aubin, T.: Équations du type Monge-Ampére sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102(1), 63–95 (1978)

    Google Scholar 

  3. Berger, M.: Sur les groupes d’holonomie homogéne des variétésá connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1953)

    Google Scholar 

  4. Bogomolov, F.A.: Holomorphic tensors and vector bundles on projective manifolds. Izv. Akad. Nauk SSSR Ser. Mat. 42(6):1227–1287, 1439 (1978)

  5. Borel, A.: Compact Clifford-Klein forms of symmetric spaces. Topology 2, 111–122 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cartan, E.: Sur les domaines bornés homogénes de l’espace des \(n\) variables complexes. Abhandl. Hamburg 11, 116–162 (1935)

    Article  Google Scholar 

  7. Catanese, F., Franciosi, M.: On varieties whose universal cover is a product of curves. With an appendix by Antonio J. Di Scala. Contemp. Math., 496, Interactions of classical and numerical algebraic geometry, 157–179, Amer. Math. Soc., Providence, RI (2009)

  8. Faraut, J., Korányi, A.: Analysis on symmetric cones. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1994)

    MATH  Google Scholar 

  9. Frankel, S.: Complex geometry of convex domains that cover varieties. Acta Math. 163(1–2), 109–149 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frankel, S.: Locally Symmetric and Rigid Factors for Complex Manifolds via Harmonic Maps. Annals of Math. 141(2), 285–300 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hano, J.: On Kaehlerian homogeneous spaces of unimodular Lie groups. Amer. J. Math. 79, 885–900 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  12. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Pure and Applied Mathematics, 80. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, (1978) xv+628 pp.

  13. Kazhdan, D.: Arithmetic varieties and their fields of quasi-definition. Actes du Congrès International des Mathematiciens (Nice, 1970), Tome 2, pp. 321–325. Gauthier-Villars, Paris (1971)

  14. Kobayashi, S.: Geometry of bounded domains. Trans. Amer. Math. Soc. 92, 267–290 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kobayashi, S.: First Chern class and holomorphic tensor fields. Nagoya Math. J. 77, 5–11 (1980)

    MathSciNet  MATH  Google Scholar 

  16. Kobayashi, S., Nomizu K.: Foundations of differential geometry. Vol. I. Interscience Publishers, a division of John Wiley & Sons, New York-Lond on (1963) xi+329 pp.

  17. Kodaira, K.: On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties). Ann. of Math. (2) 60, 28–48 (1954)

    Google Scholar 

  18. Kodaira, K., Morrow, J.: Complex manifolds. Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, vii+192 pp. (1971)

  19. Kollár J.: Shafarevich maps and automorphic forms. M. B. Porter Lectures. Princeton University Press, Princeton, NJ, x+201 pp. (1995)

  20. Korányi, A., Vági, S.: Rational inner functions on bounded symmetric domains. Trans. Amer. Math. Soc. 254, 179–193 (1979)

    MathSciNet  MATH  Google Scholar 

  21. Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21(3), 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mok, N.: Characterization of certain holomorphic geodesic cycles on quotients of bounded symmetric domains in terms of tangent subspaces. Compositio Math. 132(3), 289–309 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Olmos C. (2005) A geometric proof of the Berger holonomy theorem. Ann. of Math. (2) 161(1):579–588

    Google Scholar 

  24. Roos, G.: Jordan Triple Systems, pp. 183–282. In: Faraut, J., Kaneyuki, S., Korányi, A., Lu, Q.K., Roos, G. (eds.) Analysis and geometry on complex homogeneous domains, Progress in Mathematics, vol. 185, Birkhäuser, Boston (2000)

  25. Siegel, C.L.: Analytic Functions of Several Complex Variables. Notes by P. T. Bateman. Institute for Advanced Study, Princeton, N.J., ii+200 pp. (1950)

  26. Siegel C.L.: Topics in complex function theory. Vol. III: Abelian functions and modular functions of several variables. Translated from the original German by E. Gottschling and M. Tretkoff. Interscience Tracts in Pure and Applied Mathematics, No. 25. Wiley-Interscience [A Division of John Wiley & Sons, Inc.], New York-London-Sydney (1973)

  27. Viehweg, E., Zuo, K.: Arakelov inequalities and the uniformization of certain rigid Shimura varieties. J. Differential Geom. 77(2), 291–352 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Yau, S.-T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. U.S.A. 74(5), 1798–1799 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation. I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

  30. Yau, S.-T: Uniformization of geometric structures. The mathematical heritage of Hermann Weyl (Durham, NC, 1987), 265–274, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI (1988)

  31. Yau, S.-T.: A splitting theorem and an algebraic geometric characterization of locally Hermitian symmetric spaces. Comm. Anal. Geom. 1(3–4), 473–486 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Marco Franciosi for interesting conversations which led to our present cooperation. We also thank a first referee for the reference [11] , a second one for the nice derivation of the formula for the tensor \(\tilde{\psi }\) in the case of domains of type \(IV,\) both referees for several useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Catanese.

Additional information

This article is dedicated, with admiration (and with the friendship and gratitude of the first author), to Enrico Bombieri on the occasion of his 70th birthday.

The present work took place in the realm of the DFG Forschergruppe 790 “Classiffication of algebraic surfaces and compact complex manifolds”. The visit of the second author to Bayreuth was supported by the DFG FOR 790 The second author was also partially supported by GNSAGA (INdAM) and MIUR (PRIN07, Differential Geometry and Global Analysis), Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catanese, F., Di Scala, A.J. A characterization of varieties whose universal cover is the polydisk or a tube domain. Math. Ann. 356, 419–438 (2013). https://doi.org/10.1007/s00208-012-0841-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0841-x

Mathematics Subject Classification (2000)

Navigation