Skip to main content
Log in

Sharp geometric rigidity of isometries on Heisenberg groups

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove sharp geometric rigidity estimates for isometries on Heisenberg groups. Our main result asserts that every \((1+\varepsilon )\)-quasi-isometry on a John domain of the Heisenberg group \(\mathbb H ^n, n>1,\) is close to some isometry up to proximity order \(\sqrt{\varepsilon }+\varepsilon \) in the uniform norm, and up to proximity order \(\varepsilon \) in the \(L_p^1\)-norm. We give examples showing the asymptotic sharpness of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcozzi, N., Morbidelli, D.: Stability of isometric maps in the Heisenberg group. Comment. Math. Helv. 83(1), 101–141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buckley, S., Koskela, P., Lu, G.: Boman equals John. In: XVIth Rolf Nevanlinna Colloquium (Joensuu, 1995), pp. 91–99. de Gruyter, Berlin (1996)

  3. Buckley, S.M.: Inequalities of John-Nirenberg type in doubling spaces. J. Anal. Math. 79, 215–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. In: Proceedings of the Workshop on Second-Order Subelliptic Equations and Applications (Cortona, Italy, June 16–22, 2003). S.I.M. Lecture Notes of Seminario Interdisciplinare di Matematica, vol. 3, pp. 145–161. Dipartimento di Matematica, Universita degli Studi della Basilicata, Potenza (2004)

  5. Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. Pure and Applied Mathematics, vol. 7. Interscience Publishers, New York (1958)

  6. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)

    Article  MATH  Google Scholar 

  7. Garofalo, N., Nhieu, D.-M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49(10), 1081–1144 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gromov, M.: Carnot-Carathéodory spaces seen from within. In: Sub-Riemannian Geometry, pp. 79–318. Birkhäuser, Basel (1996)

  9. Hladky, R.K., Pauls, S.D.: Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model. J. Math. Imaging Vis. 36(1), 1–27 (2010)

    Article  MathSciNet  Google Scholar 

  10. Hurri-Syrjänen, R.: The John-Nirenberg inequality and a Sobolev inequality for general domains. J. Math. Anal. Appl. 175, 579–587 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Isangulova, D.V.: The class of mappings with bounded specific oscillation, and integrability of mappings with bounded distortion on Carnot groups. Sibirsk. Mat. Zh. 48(2), 313–334 (2007); English translation: Siberian Math. J. 48(2), 249–267 (2007)

  12. Isangulova, D.V.: Local stability of mappings with bounded distortion on Heisenberg groups. Sibirsk. Mat. Zh. 48(6), 1228–1245 (2007); English translation: Siberian Math. J. 48(6), 984–997 (2007)

  13. Isangulova D. V.: Sharp geometric rigidity of isometries on the first Heisenberg group. In preparation (2012)

  14. Isangulova, D.V., Vodopyanov, S.K.: Coercive estimates and integral representation formulas on Carnot groups. Eurasian Math. J. 1(3), 58–96 (2010)

    MathSciNet  MATH  Google Scholar 

  15. John, F.: Rotation and strain. Commun. Pure Appl. Math. 14, 391–413 (1961)

    Article  MATH  Google Scholar 

  16. John, F., Bounds for deformations in terms of average strains. In: Inequalities, III. Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969, pp. 129–144; Dedicated to the memory of Theodore S. Motzkin. Academic Press, New York (1972)

  17. Karmanova, M.B., Vodop’yanov, S.K.: Geometry of Carnot–Carathéodory spases, differentiability, coarea and area formulas. In: Gustavsson, B., Vasil’ev, A. (eds.) Analysis and Mathematical Physics. Trends in Mathematics, pp. 233–335. Birkhäuser, Basel-Boston-Berlin (2009)

  18. Karmanova, M.: A new approach to investigation of Carnot–Carathéodory geometry. Geom. Funct. Anal. 21, 1358–1374 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Korányi, A., Reimann, H.M.: Foundations for the theory of quasiconformal mappings on the Heisenberg group. Adv. Math. 111(1), 1–87 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, vol. 7. Theory of Elasticity, 4th edn. Nauka, Moscow (1986); English translation: Pergamon Press, Oxford (1986)

  21. Malcev, A.I.: Foundations of Linear Algebra. Gostechizdat, Moscow (1956); English translation: W. H. Freeman& Co., San Francisco (1963)

  22. Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103–147 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pansu, P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. 129(1), 1–60 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smith, W., Stegenda, D.A.: Exponential integrability of the quasihyperbolic metric in Hölder domains. Ann. Acad. Sci. Fenn. Ser. A I. Math. 16, 345–460 (1991)

    Google Scholar 

  25. Reshetnyak, Yu.G.: Stability Theorems in Geometry and Analysis. Mathematics and its Applications, vol. 304. Kluwer, Dordrecht (1994)

  26. Romanovskii, N.N.: Integral representations and embedding theorems for functions defined on the Heisenberg groups \({\mathbb{H}}^n\). Algebra i Analiz 16(2), 82–119 (2004); English translation: St. Petersburg Math. J. 16(2), 349–375 (2005)

  27. Romanovskii, N.N.: On the Mikhlin problem on Carnot groups. Sibirsk. Mat. Zh. 49(1), 193–206 (2008); English translation: Siberian Math. J. 49(1), 155–165 (2008)

  28. Vodopyanov, S.K.: Closure of classes of mappings with bounded distortion on Carnot groups. Mat. Tr. 5(2), 92–137 (2002); English translation: Siberian Adv. Math. 14(1), 84–125 (2004)

  29. Vodopyanov, S.K.: Geometry of Carnot-Carathéodory spaces and differentiability of mappings. In: The Interaction of Analysis and Geometry. Contemp. Math., vol. 424, pp. 247–301. Amer. Math. Soc., Providence (2007)

  30. Vodopyanov, S.K., Isangulova, D.V.: Sharp geometric rigidity of isometries on Heisenberg groups. Dokl. Akad. Nauk. 482(5), 583–588 (2008); English translation: Dokl. Math. 77(3), 432–437 (2008)

Download references

Acknowledgments

The research was partially supported by the Russian Foundation for Basic Research (Grant 10–01–00662), the State Maintenance Program for Young Russian Scientists and the Leading Scientific Schools of the Russian Federation (Grant NSh 921.2012.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Vodopyanov.

Appendix

Appendix

1.1 Application of the embedding theorem

Lemma 11.

Let \(f\in I(1+\varepsilon ,B(a,r))\) and

$$\begin{aligned} \Vert D_h f-I\Vert _{p,B(a,r)} \le \varepsilon |B(a,r)|^{1/p}. \end{aligned}$$

If \(p>\nu \) and \(f(a)=a\) then

$$\begin{aligned} \rho (f(x),x)\le C r (\sqrt{\varepsilon }+\varepsilon ) \quad \text{ for} \text{ all}\ x\in B(a,s r) \end{aligned}$$

with \(s\in (0,1).\) The constant \(C\) depends only on \(n, p,\) and \(s.\)

Proof

Put \(B=B(a,r).\) Denote the first \(2n\) coordinates of \(x^{-1}\cdot f(x)\) by \(\psi (x)\) and the last coordinate of \(x^{-1}\cdot f(x)\) by \(\chi (x).\) Estimate \(\nabla _{\mathcal L }\psi _i(x)\) for all \(i=1,\dots ,2n\) and \(\nabla _{\mathcal L }\chi (x).\) Clearly,

$$\begin{aligned} \Vert \nabla _\mathcal L \psi _i\Vert _{p,B}= \Vert \nabla _\mathcal L f _i-\nabla _\mathcal L x_i\Vert _{p,B} \le \Vert D_h f-I\Vert _{p,B}, \quad i=1,\dots ,2n. \end{aligned}$$

The embedding theorem (see [7] for example) yields

$$\begin{aligned} |\psi _k(x)| \le C_1 r^{1-\nu /p}\Vert \nabla _{\mathcal L }\psi _k\Vert _{p,B} \le C_2\varepsilon r\quad \text{ for} \text{ all}\ x\in \frac{s+1}{2}B, \ k=1,\dots ,2n. \end{aligned}$$

We have

$$\begin{aligned} \chi (x)= f _{2n+1}(x)-x_{2n+1} +2\sum _{j=1}^n \bigl (x_j f _{j+n}(x)- x_{j+n} f _j(x)\bigr ). \end{aligned}$$

The contact condition \(X_i f(x)\in H_{f(x)}\mathbb H ^n\) for \(i=1,\dots ,2n\) yields

$$\begin{aligned} X_i f_{2n+1}(x)=2\sum _{j=1}^n f_{j+n}(x)X_i f_j(x)-f_j(x)X_i f_{j+n}(x), \end{aligned}$$

and then we deduce that \(\nabla _\mathcal L \chi (x)= 2\bigl ((D_h f (x))^t+I\bigr ) J \psi (x),\) where \(J\) is the \(2n\times 2n\) matrix defined in (8).

Applying the embedding theorem once again, we obtain

$$\begin{aligned} |\chi (x)| \le C_3 r^{1- \nu /p}\Vert \nabla _{6\mathcal L }\chi \Vert _{p,\frac{s+1}{2}B} \le C_4 r \Vert \psi \Vert _{C(\frac{s+1}{2}B)} (2+\varepsilon ) \le C_5 r^{2} \varepsilon (2+\varepsilon ) \end{aligned}$$

for all \(x\in s B.\) Hence, \(\rho (f(x),x)\le C_6 r(\sqrt{\varepsilon (2+\varepsilon )}+\varepsilon ) \le C_7 r(\sqrt{\varepsilon }+\varepsilon ) \) for all \(x\in B(a,s r).\)

 

1.2 Isometries on the balls

 

Lemma 12.

If \(\varphi \) is an isometry on \(\mathbb H ^n\) with \(\rho (\varphi (x),x)\le \varepsilon r\) for all \(x\in \overline{B(a,r)}\subset \mathbb H ^n\) with \(\varepsilon <1/2,\) then \( \rho (\varphi (x),x)\le 5 \varepsilon s r \) for all \(x\in \overline{B(a,sr)}, s\ge 1.\)

 

Proof

Assume that \(B(a,r)=B(0,1).\) Suppose firstly that \(\varphi =\iota \circ \pi _\mathbf a \circ \varphi _A\) where \(\mathbf a =(a,\alpha )\in \mathbb H ^n\) with \(a\in \mathbb C ^n\) and \(\alpha \in \mathbb R ,\) as well as \(A\in U(n).\) If \(x=0\) then \(|a|<1/2\) and \(|\alpha |\le 1/4.\) If \(z=0\) and \(t=1\) then we arrive at a contradiction:

$$\begin{aligned} 1/2 \ge \rho \bigl (\varphi (0,1),(0,1)\bigr ) = \rho \bigl ((\overline{a},-\alpha -2)\bigr ) \ge \sqrt{2+\alpha }. \end{aligned}$$

Thus, \(\varphi =\pi _\mathbf a \circ \varphi _A,\) where \(\mathbf a =(a,\alpha )\in \mathbb H ^n, a\in \mathbb C ^n, \alpha \in \mathbb R ,\) and \(A\in U(n).\) We have

$$\begin{aligned} x^{-1}\cdot \mathbf a \cdot \varphi _A x= (-z+a+Az, \alpha +2\text{ Im}\langle a,Az\rangle -2 \text{ Im} \langle z, a+Az\rangle ). \end{aligned}$$

Clearly, \(|\mathbf a |=\rho (\varphi (0),0)\le \varepsilon \) and \( |Az-z|\le |Az-z+a|+|a|\le 2\varepsilon .\)

We have

$$\begin{aligned} 2|\text{ Im}\langle 2a+ A z,z\rangle |&\le |\alpha +2\text{ Im}\langle a, A z\rangle - 2\text{ Im}\langle z, Az+a\rangle |\\&+ |\alpha |+ 2|\text{ Im}\langle a, A z-z+a\rangle | \le 4\varepsilon ^2 \quad \text{ for} \text{ all}\ z\in \mathbb C ^n,\ |z|\le 1. \end{aligned}$$

Suppose that \( Aa=\xi a~+d\) and \((d,a)=0\) with \(\xi \in \mathbb C \) and \(d\in \mathbb C ^n.\) Put \(z= \gamma a, |z|\le 1.\) Then

$$\begin{aligned} |\text{ Im}\langle 2a+ A z,z\rangle |= |\text{ Im}\langle 2a+\gamma (\xi a+d),\gamma a\rangle | = |a|^2|\text{ Im}(2\overline{\gamma }+ \xi |\gamma |^2)| \le 2\varepsilon ^2. \end{aligned}$$

Suppose that \(a\ne 0.\) For \(\gamma =\frac{1}{|a|},\) we infer that \(|\text{ Im}\langle 2a+ A z,z\rangle |=|\text{ Im} \xi |\le 2\varepsilon ^2.\) For \(\gamma =\frac{-i}{|a|},\)

$$\begin{aligned} 2|a|\le |a|^2|\text{ Im}(2\overline{\gamma }+ \xi |\gamma |^2)| +|\text{ Im} \xi | \le 4\varepsilon ^2. \end{aligned}$$

Hence,

$$\begin{aligned} |\text{ Im}\langle A z,z\rangle | \le |\text{ Im}\langle 2a+ A z,z\rangle |+|\text{ Im}\langle 2a,z\rangle | \le 6\varepsilon ^2. \end{aligned}$$

In the case of \(a=0,\) we obviously have \( |\text{ Im}\langle A z,z\rangle | \le 2\varepsilon ^2.\)

Consider \(y=\delta _s x\in B(0,s).\) We obtain

$$\begin{aligned} y^{-1}\cdot \mathbf a \cdot \varphi _A y =(-sz+a+sAz, \alpha +2\text{ Im}\langle a,A s z\rangle -2 \text{ Im} \langle sz, a+Asz\rangle ). \end{aligned}$$

Then \( |-sz+a+sAz|\le s|Az-z|+a\le (2s+1)\varepsilon \) and

$$\begin{aligned}&|\alpha +2\text{ Im}\langle a,A s z\rangle -2 \text{ Im} \langle sz, a+Asz\rangle | \\&\qquad \le |\alpha |+2|\text{ Im}\langle a,Asz+sz\rangle | +2|\text{ Im} \langle sz,Asz\rangle | \le (1+8s+12s^2)\varepsilon ^2. \end{aligned}$$

Thus, \( \rho (\pi _\mathbf a \circ \varphi _A(y),y) \le 5s\varepsilon .\)

Now, take an arbitrary ball \(B(a,r)\) and suppose that \(\rho (\varphi (x),x)\le \varepsilon r\) on \(B(a,r).\) The isometry \(\theta =\delta _{1/r}\circ \pi _{-a}\circ \varphi \circ \pi _{a}\circ \delta _{r}\) satisfies \(\rho (\theta (y),y)\le 5s\varepsilon \) for all \(y\in B(0,s).\) Inserting \(x=a\cdot \delta _r y\) for \(x\in B(a,sr),\) we obtain the required estimate.

The following lemma is obvious.

Lemma 13.

If \(\rho (bx,x)\le \varepsilon \) on \(B(a,r)\) then \(\rho (bx,x)<3s\varepsilon \) on \(B(a,sr), s\ge 1.\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isangulova, D.V., Vodopyanov, S.K. Sharp geometric rigidity of isometries on Heisenberg groups. Math. Ann. 355, 1301–1329 (2013). https://doi.org/10.1007/s00208-012-0820-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0820-2

Mathematics Subject Classification (2000)

Navigation