Skip to main content
Log in

Global Solution to the Incompressible Oldroyd-B Model in the Critical L p Framework: the Case of the Non-Small Coupling Parameter

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper is dedicated to the global well-posedness issue of the incompressible Oldroyd-B model in the whole space \({\mathbb{R}^d}\) with \({d \geqq 2}\) . It is shown that this set of equations admits a unique global solution in a certain critical L p-type Besov space provided that the initial data, but not necessarily the coupling parameter, is small enough. As a consequence, even through the coupling effect between the equations of velocity u and the symmetric tensor of constrains τ is not small, one may construct the unique global solution to the Oldroyd-B model for a class of large highly oscillating initial velocity. The proof relies on the estimates of the linearized systems of (u, τ) and \({(u, \mathbb{P}{\rm div}\tau)}\) which may be of interest for future works. This result extends the work by Chemin and Masmoudi (SIAM J Math Anal 33:84–112, 2001) to the non-small coupling parameter case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 343. Springer, Heidelberg, (2011)

  2. Bony J.M.: Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires. Annales Scinentifiques de l’école Normale Supérieure 14, 209–246 (1981)

    MATH  MathSciNet  Google Scholar 

  3. Cannone M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoamericana 13, 515–541 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cannone, M., Meyer, Y., Planchon, F.: Solutions autosimilaires des équations de Navier–Stokes. In: S éminaire “Équations aux Dérivées Partielles” de l’École Polytechnique, Exposé VIII, (1993–1994)

  5. Charve F., Danchin R.: A global existence result for the compressible Navier–Stokes Navier–Stokes equations in the critical L p framwork. Arch. Rational Mech. Anal. 198, 233–271 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Chemin, J.Y.: Localization in Fourier space and Navier–Stokes system. Phase Space Analysis of Partial Differential Equations. Proceedings 2004, CRM series, Pisa, 53–136, (2004)

  7. Chemin J.Y., Lerner N.: Flot de champs de vecteurs non Lipschitziens et équations de Navier–Stokes. J. Differential Equations 121, 314–228 (1995)

    Google Scholar 

  8. Chemin J.Y.: Théorèmes d’ unicité pour le système de Navier–Stokes tridimensionnel. Journal d’Analyse Mathématique 77, 25–50 (1999)

    Article  MathSciNet  Google Scholar 

  9. Chemin J.Y., Masmoudi N.: About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal 33, 84–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen Q.L., Miao C.X.: Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces. Nonlinear Anal., 68, 1928–1939 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen Q.L., Miao C.X., Zhang Z.F.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Comm. Pure Appl. Math. 63, 1173–1224 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Constantin P., Kliegl M.: Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress. Arch. Rational Mech. Anal. 206, 725–740 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Danchin R.: Density-dependent incompressible viscous fluids in critical spaces. Proc. Roy. Soc. Edinburgh Sect. A 133, 1311–1334 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Danchin R.: A Lagrangian approach for the incompressible Navier–Stokes equations with varibable density. Comm. Pure Appl. Math. 65, 1458–1480 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fang D.Y., Hieber M., Zi R.Z.: Global existence results for Oldroyd-B Fluids in exterior domains: The case of non-small coupling parameters. Math. Ann. 357, 687–709 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fang, D.Y., Zi, IR.Z.: Incompressible limit of Oldroyd-B fluids in the whole space, Preprint, (2013)

  17. Fernández-Cara E., Guillén F., Ortega R.: Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind. Ann. Scuola Norm. Sup. Pisa 26, 1–29 (1998)

    MATH  Google Scholar 

  18. Fujita H., Kato T.: On the Navier–Stokes initial value problem I. Arch. Rational Mech. Anal. 16, 269–315 (1964)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Guillopé C., Saut J.C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15, 849–869 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Guillopé C., Salloum Z., Talhouk R.: Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete Contin. Dyn. Syst. Ser. B 14, 1001–1028 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hieber M., Naito Y., Shibata Y.: Global existence results for Oldroyd-B fluids in exterior domains. J. Differ. Equ. 252, 2617–2629 (2012)

    ADS  MATH  MathSciNet  Google Scholar 

  22. Hmidi T.: Régularité höldérienne des poches de tourbillon visqueuses. J. Math. Pures Appl. 84, 1455–1495 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hoff D., Zumbrun K.: Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 603–676 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Koch H., Tataru D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kupferman R., Mangoubi C., Titi E.S.: A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime. Commun. Math. Sci. 6, 235–256 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lei Z.: Global existence of classical solutions for some Oldroyd-B model via the incompressible limit. Chinese Ann. Math. Ser. B 27, 565–580 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lei Z.: On 2D viscoelasticity with small strain. Arch. Rational Mech. Anal. 198, 13–37 (2010)

    Article  ADS  MATH  Google Scholar 

  28. Lei Z., Liu C., Zhou Y.: Global existence for a 2D incompressible viscoelastic model with small strain. Commun. Math. Sci. 5, 595–616 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lei Z., Liu C., Zhou Y.: Global solutions for incompressible viscoelastic fluids. Arch. Rational Mech. Anal. 188, 371–398 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Lei Z., Masmoudi N., Zhou Y.: Remarks on the blowup criteria for Oldroyd models. J. Differ. Equ. 248, 328–341 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Lei Z., Zhou Y.: Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit. SIAM J. Math. Anal. 37, 797–814 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lin F.H., Liu C., Zhang P.: On hydrodynamics of viscoelastic fluids. Comm. Pure Appl. Math. 58, 1437–1471 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lin F.H., Zhang P.: On the initial-boundary value problem of the incompressible viscoelastic fluid system. Comm. Pure Appl. Math. 61, 539–558 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lions P.L., Masmoudi N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chinese Ann. Math. Ser. B 21, 131–146 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Molinet L., Talhouk R.: On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law. Nonlinear Differ. Equ. Appl. 11, 349–359 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Oldroyd J.G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. Roy. Soc. Lond. 245, 278–297 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Qian J.Z.: Well-posedness in critical spaces for incompressible viscoelastic fluid system. Nonlinear Anal. 72, 3222–3234 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Talhouk, R.: Analyse Mathématique de Quelques Écoulements de Fluides Viscoélastiques, Thèse, Université Paris-Sud, (1994)

  39. Vishik M.: Hydrodynamics in Besov spaces. Arch. Rational Mech. Anal. 145, 197–214 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Weissler F.: The Navier–Stokes initial value problem in L p. Arch. Rational Mech. Anal. 74, 219–230 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Zhang T., Fang D.Y.: Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical L p framework. SIAM J. Math. Anal. 44, 2266–2288 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zi, R.Z.: Global solutions to Oldroyd-B model in hybrid Besov spaces. Preprint, (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhang.

Additional information

Communicated by F. Lin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zi, R., Fang, D. & Zhang, T. Global Solution to the Incompressible Oldroyd-B Model in the Critical L p Framework: the Case of the Non-Small Coupling Parameter. Arch Rational Mech Anal 213, 651–687 (2014). https://doi.org/10.1007/s00205-014-0732-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0732-2

Keywords

Navigation