Skip to main content
Log in

Blow Up Criterion for Compressible Nematic Liquid Crystal Flows in Dimension Three

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider the short time strong solution to a simplified hydrodynamic flow modeling compressible, nematic liquid crystal materials in dimension three. We establish a criterion for possible breakdown of such solutions at a finite time in terms of the temporal integral of both the maximum norm of the deformation tensor of the velocity gradient and the square of the maximum norm of the gradient of a liquid crystal director field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equation. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bourguignon J., Brezis H.: Remarks on the Euler equation. J. Funct. Anal. 15, 341–363 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choe H.J., Kim H.: Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J. Differ. Equ. 190, 504–523 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cho Y., Choe H.J., Kim H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chu, Y.M., Liu, X., Liu, X.G.: Strong solutions to the compressible liquid crystal system. Preprint, 2011

  6. Chen G.Q., Osborne D., Qian Z.: The Navier-Stokes equations with the kinematic and vorticity boundary conditions on non-flat boundaries. Acta Math. Sci. Ser. B Engl. Ed. 29(4), 919–948 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Chen G.Q., Qian Z.: A study of the Navier-Stokes equations with the kinematic and Navier boundary conditions. Indiana Univ. Math. J. 59(2), 721–760 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Ding, S.J., Lin, J.Y., Wang, C.Y., Wen, H.Y.: Compressible hydrodynamic flow of liquid crystals in 1D. DCDS Series A (to appear)

  9. Ding S.J., Wang C.Y., Wen H.Y.: Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. DCDS Series B 2, 357–371 (2011)

    MathSciNet  Google Scholar 

  10. Ericksen J.L.: Hydrostatic theory of liquid crystal. Arch. Rational Mech. Anal. 9, 371–378 (1962)

    MathSciNet  MATH  Google Scholar 

  11. Feireisl E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  12. de Gennes, P.G.: The Physics of Liquid Crystals. Oxford, 1974

  13. Hardt R., Kinderlehrer D., Lin F.: Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105, 547–570 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Hong M.C.: Global existence of solutions of the simplified Ericksen-Leslie system in \({\mathbb R^2}\) . Calc. Var. 40(1–2), 15–36 (2011)

    Article  MATH  Google Scholar 

  15. Huang, X., Li, J., Xin, Z.P.: Serrin Type Criterion for the Three-Dimensional Viscous Compressible Flows. Preprint. http://arxiv.org/list/math.AP/1004.4748, 2010

  16. Huang X., Li J., Xin Z.P.: Blowup criterion for viscous baratropic flows with vacuum states. Commun. Math. Phys. 301, 23–35 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Huang, T., Wang, C.Y.: Blow up criterion for nematic liquid crystal flows. Preprint (2011)

  18. Huang, T., Wang, C.Y., Wen, H.Y.: Strong solutions of the compressible nematic liquid crystal flow. J. Diff. Equ. (2011, to appear)

  19. Lin F.H.: Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena. CPAM 42, 789–814 (1989)

    MATH  Google Scholar 

  20. Lin F.H., Liu C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. CPAM, XLVIII, 501–537 (1995)

    MathSciNet  Google Scholar 

  21. Lin F.H., Liu C.: Partial regularity of the dynamic system modeling the flow of liquid cyrstals. DCDS 2(1), 1–22 (1998)

    Google Scholar 

  22. Liu, X.G., Liu, L.M.: A blow-up criterion for the compressible liquid crystals system. Preprint. http://arxiv.org/list/math.AP/1011.4399

  23. Lin F.H., Wang C.Y.: On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chinese Ann. Math. B 31(6), 921–938 (2010)

    Article  MATH  Google Scholar 

  24. Lin F.H., Wang C.Y.: The Analysis of Harmonic Maps and Their Heat Flows. World Scientific, Hackensack (2008)

    Book  MATH  Google Scholar 

  25. Lin F.H., Lin J.Y., Wang C.Y.: Liquid crystal flows in two dimensions. Arch. Rational Mech. Anal. 197, 297–336 (2010)

    Article  ADS  MATH  Google Scholar 

  26. Lions P.L.: Mathematical topics in fluid mechanics, vol 1 Incompressible models Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, The Clarendon Press Oxford University Press, New York (1996)

    Google Scholar 

  27. Lions P.L.: Mathematical topics in fluid mechanics, vol. 2. Compressible models Oxford. Lecture Series in Mathematics and its Applications, 10 Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1998)

    Google Scholar 

  28. Ponce G.: Remarks on a paper: “Remarks on the breakdown of smooth solutions for the 3-D Euler equations”. Commun. Math. Phys. 98(3), 349–353 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Leslie F.M.: Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Morro A.: Modelling of nematic liquid crystals in electromagnetic fields. Adv. Theor. Appl. Mech. 2(1), 43–58 (2009)

    MATH  Google Scholar 

  31. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, 2001

  32. Sun Y., Wang C., Zhang Z.: A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations. J. Math. Pures. Appl. 95, 36–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang C.Y.: Heat flow of harmonic maps whose gradients belong to \({L^n_xL^\infty_t}\) . Arch. Rational Mech. Anal. 188, 309–349 (2008)

    Article  Google Scholar 

  34. Von Wahl W.: Estimating \({\nabla u}\) by div u and curl u. Math. Methods Appl. Sci. 15, 123–143 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Xu, X., Zhang, Z.F.: Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. Preprint, 2011

  36. Yoshida Z., Giga Y.: Remarks on spectra of operator Rot. Math. Z. 204, 235–245 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zakharov A.V., Vakulenko A.A.: Orientational dynamics of the compressible nematic liquid crystals induced by a temperature gradient. Phys. Rev. E 79, 011708 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyou Wang.

Additional information

Communicated by F. Lin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, T., Wang, C. & Wen, H. Blow Up Criterion for Compressible Nematic Liquid Crystal Flows in Dimension Three. Arch Rational Mech Anal 204, 285–311 (2012). https://doi.org/10.1007/s00205-011-0476-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0476-1

Keywords

Navigation