Skip to main content
Log in

On the Existence of Weak Solutions to the Steady Compressible Flow of Nematic Liquid Crystals

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we consider the existence of weak renormalized solutions for the steady compressible flow of nematic liquid crystals in a 3-D bounded domain with no-slip boundary condition. By using a three-level approximation scheme, we establish the existence of weak renormalized solutions under the hypothesis \(\gamma >1\) for the adiabatic constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogovskii, M.E.: Solutions of some vector analysis problems connected with operators div and grad. Trudy Sem. S. L. Sobolev 80(1), 5–40 (1980)

    Google Scholar 

  2. Březina, J., Novotný, A.: On weak solutions of steady Navier–Stokes equations for monatomic gas. Comment. Math. Univ. Carolin. 49, 611–632 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Borchers, W., Sohr, H.: On the equation \(\text{ rot } v=g\) and \(\text{ div } u=f\) with zero boundary conditions. Hokkaido Math. J. 19, 67–87 (1990)

    Article  MathSciNet  Google Scholar 

  4. Chandrasekhar, S.: Liquid Crystals, 2nd edn. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  5. Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–34 (1961)

    Article  MathSciNet  Google Scholar 

  6. Ericksen, J.L.: Hydrostatic theory of liquid crystal. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    Article  MathSciNet  Google Scholar 

  7. Eliezer, S., Ghatak, A., Hora, H.: An Introduction to Equations of States, Theory and Applications. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  8. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and Its Applications, vol. 26. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  9. Feireisl, E.: Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel (2009)

    Book  Google Scholar 

  10. de Gennes, P.G.: The Physics of Liquid Crystals. Oxford University Press, Oxford (1974)

    MATH  Google Scholar 

  11. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  Google Scholar 

  12. Jiang, S., Zhou, C.: Existence of weak solutions to the three dimensional steady compressible Navier–Stokes equations. Ann. IHP Anal. Nonlineaire 28, 485–498 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Lions, P.L.: Mathematical Topics in Fluid Mechanics. Vol 2: Compressible Models, Oxford Science Publications, Calderon Press, New York (1998)

  14. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  Google Scholar 

  15. Lin, F.H.: Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena. Commun. Pure Appl. Math. 42, 789C814 (1989)

    MathSciNet  Google Scholar 

  16. Lin, F.H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  Google Scholar 

  17. Novo, S., Novotný, A.: On the existence of weak solutions to steady compressible Navier–Stokes equations when the density is not square integrable. J. Math. Kyoto Univ. 42, 531–550 (2002)

    Article  MathSciNet  Google Scholar 

  18. Novotný, A., Pokorny, M.: Weak and variational solutions to steady equations for compressible heat conducting fluids. SIAM J. Math. Anal. 43, 1158–1188 (2011)

    Article  MathSciNet  Google Scholar 

  19. Plotnikov, P., Sokolowski, J.: Concentrations of stationary solutions to compressible Navier–Stokes equations. Commun. Math. Phys. 258, 567–608 (2005)

    Article  ADS  Google Scholar 

  20. Plotnikov, P.I., Weigant, W.: Steady 3D viscous compressible flows with adiabatic exponent \(\gamma \in (1, \infty )\). J. Math. Pures Appl. 104, 58–82 (2015)

    Article  MathSciNet  Google Scholar 

  21. Tartar, L.: Compensated compactness and applications to partila differential equations. In: Knopps, L.J. (ed.) Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Research Notes in Math., vol. 39, pp. 136–211. Pitman (1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Jin.

Additional information

Communicated by T. Nishida.

This work is supported by NSFC (11471127, 11571380), Guangdong Natural Science Funds for Distinguished Young Scholar (2015A030306029).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C. On the Existence of Weak Solutions to the Steady Compressible Flow of Nematic Liquid Crystals. J. Math. Fluid Mech. 20, 1487–1507 (2018). https://doi.org/10.1007/s00021-018-0374-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0374-5

Keywords

Navigation