Skip to main content
Log in

Tributyltin in male mice disrupts glucose homeostasis as well as recovery after exposure: mechanism analysis

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Organotin compounds such as tributyltin (TBT) and triphenyltin can induce diabetes and insulin resistance. However, the development of diabetes caused by organotins and its underlying mechanisms remain unclear. In the present study, male KM mice were orally administered with TBT (0.5, 5, and 50 μg/kg) once every 3 days for 45 days. Their body weights increased and reached a significant difference compared to the control, and the fasting blood glucose levels were significantly elevated. The fasting levels of serum insulin and adiponectin increased, while glucagon levels decreased in the animals treated with TBT. The expression of the insulin receptor (IR) signaling cascade, including IR, IR substrate, phosphatidylinositol 3-kinase, Akt, and glucose transporter 4, was inhibited both in the skeletal muscle and the liver, which might be a main reason for the hyperglycemia and hyperinsulinemia. After removing the TBT stress for 60 days, the animals which had received exposure to TBT could recover normoglycemia, accompanied with a recovery of the suppressed IR signal pathway and fasting insulin levels. However, the fasting levels of serum adiponectin and glucagon were lower than that of the control mice, which would remain a potential risk inducing the disruption of glucose homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahren B, Larsson H (2001) Impaired glucose tolerance (IGT) is associated with reduced insulin-induced suppression of glucagon concentrations. Diabetologia 44:1998–2003

    Article  CAS  PubMed  Google Scholar 

  • American Diabetes Association (2004) Diagnosis and classification of diabetes mellitus. Diabetes Care 27(Suppl. 1):S5–S10

    Google Scholar 

  • Antuna-Puente B, Feve B, Fellahi S, Bastard JP (2008) Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab 34:2–11

    Article  CAS  PubMed  Google Scholar 

  • Araki E, Lipes MA, Patti M-E, Brüning JC, Haag B III, Johnson RS, Kahn CR (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the irs-1 gene. Nature 372:186–190

    Article  CAS  PubMed  Google Scholar 

  • Awazawa M, Ueki K, Inabe K, Yamauchi T, Kubota N, Kaneko K, Kobayashi M, Iwane A, Sasako T, Okazaki Y, Ohsugi M, Takamoto I, Yamashita S, Asahara H, Akira S, Kasuga M, Kadowaki T (2011) Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell Metab 13(4):401–412

    Article  CAS  PubMed  Google Scholar 

  • Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B, Qi Y, Wang J, RaJala MW, Pocai A, Scherer PE, Steppan CM, Ahima RS, Obici S, Rossetti L, Lazar M (2004) Regulation of fasted blood glucose by resistin. Science 303:1195–1198

    Article  CAS  PubMed  Google Scholar 

  • Belfroid AC, Purperhart M, Ariese F (2000) Organotin levels in seafood. Mar Pollut Bull 40(3):226–232

    Article  CAS  Google Scholar 

  • Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953

    Article  CAS  PubMed  Google Scholar 

  • Bertazzi PA, Consonni D, Bachetti S, Rubagotti M, Baccarelli A, Zocchetti C, Pesatori AG (2001) Health effects of dioxin exposure: a 20-year mortality study. Am J Epidemiol 153(11):1031–1044

    Article  CAS  PubMed  Google Scholar 

  • Bertuloso BD, Podratz PL, Merlo E, de Araújo JFP, Lima LCF, de Miguel EC, de Souza LN, Gava AL, de Oliveira M, Miranda-Alves L, Carneiro MTWD, Nogueira CR, Graceli JB (2015) Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas. Toxicol Lett 235:45–59

    Article  CAS  PubMed  Google Scholar 

  • Brüning JC, Michael MD, Winnay JN, Hayashi T, Hörsch D, Accili D, Goodyear LJ, Kahn CR (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of niddm without altering glucose tolerance. Mol Cell 2:559–569

    Article  PubMed  Google Scholar 

  • Capozza F, Combs TP, Cohen AW, Cho Y-R, Park S-Y, Schubert W, Williams TM, Brasaemle DL, Jelicks LA, Scherer PE, Kim JK, Lisanti MP (2005) Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. Am J Physiol Cell Ph 288:C1317–C1331

    Article  CAS  Google Scholar 

  • Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G (2005) Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48(1):132–139

    Article  CAS  PubMed  Google Scholar 

  • Chandran M, Phillips SA, Ciaraldi T, Henry RR (2003) Adiponectin: more than just another fat cell hormone? Diabetes Care 26:2442–2450

    Article  CAS  PubMed  Google Scholar 

  • Chen JW, Wang SL, Liao PC, Chen HY, Ko YC, Lee CC (2008) Relationship between insulin sensitivity and exposure to dioxins and polychlorinated biphenyls in pregnant women. Environ Res 107(2):245–253

    Article  CAS  PubMed  Google Scholar 

  • Cranmer M, Louie S, Kennedy RH, Kern PA, Fonseca VA (2000) Exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with hyperinsulinemia and insulin resistance. Toxicol Sci 56(2):431–436

    Article  CAS  PubMed  Google Scholar 

  • D’Alessio D. (2011) The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes Obes Metab 13 (Suppl. 1): 126–132

    Article  PubMed  Google Scholar 

  • DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32:S157–S163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber J (1981) The effect of insulin on the disposal of intravenous glucose: Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Diez JJ, Iglesias P (2003) The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 148:293–300

    Article  CAS  PubMed  Google Scholar 

  • Dunning BE, Gerich JE (2007) The role of α-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 28:253–283

    Article  CAS  PubMed  Google Scholar 

  • Gerich JE, Langlois M, Noacco C, Karam JH, Forsham PH (1973) Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect. Science 182:171–173

    Article  CAS  PubMed  Google Scholar 

  • Grandjean P, Henriksen JE, Choi AL, Petersen MS, Dalgård C, Nielsen F, Weihe P (2011) Marine food pollutants as a risk factor for hypoinsulinemia and type 2 diabetes. Epidemiology 22(3):410–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Grün F, Blumberg B (2006) Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 147(6 Suppl):S50–S55

    Article  PubMed  Google Scholar 

  • Harino H, Fukushima M, Kawai S (2000) Accumulation of butyltin and phenyltin compounds in various fish species. Arch Environ Contam Toxicol 39:13–19

    Article  CAS  PubMed  Google Scholar 

  • Hectors TLM, Vanparys C, van der Ven K, Martens GA, Jorens PG, Van Gaal LF, Covaci A, De Coen W, Blust R (2011) Environmental pollutants and type 2 diabetes: a review of mechanisms that can disrupt beta cell function. Diabetologia 54(6):1273–1290

    Article  CAS  PubMed  Google Scholar 

  • Jones OA, Maguire ML, Griffin JL (2008) Environmental pollution and diabetes: a neglected association. The Lancet 371(9609):287–288

    Article  Google Scholar 

  • Jung UJ, Choi MS (2014) Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 15:6184–6223

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46(12):3–19

    Article  CAS  PubMed  Google Scholar 

  • Kannan K, Senthilkumar K, Giesy J (1999a) Occurrence of butyltin compounds in human blood. Environ Sci Technol 33(10):1776–1779

    Article  CAS  Google Scholar 

  • Kannan K, Grove RA, Senthilkumar K, Henny CJ, Giesy JP (1999b) Butyltin compounds in river otters (Lutra canadensis) from the northwestern United States. Arch Environ Contam Toxicol 36(4):462–468

    Article  CAS  PubMed  Google Scholar 

  • Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  CAS  PubMed  Google Scholar 

  • Kido Y, Burks DJ, Withers D, Bruning JC, Kahn CR, White MF, Accili D (2000) Tissue-specific insulin resistance in mice with mutations in the insulin receptor, irs-1, and irs-2. J Clin Invest 105:199–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinlaw WB, Marsh B (2004) Adiponectin and HIV-lipodystrophy: Taking HAART. Endocrinology 145:484–486

    Article  CAS  PubMed  Google Scholar 

  • Larsson H, Ahren B (2000) Islet dysfunction in insulin resistance involves impaired insulin secretion and increased glucagon secretion in postmenopausal women with impaired glucose tolerance. Diabetes Care 23:650–657

    Article  CAS  PubMed  Google Scholar 

  • Lee CC, Wang T, Hsieh CY, Tien CJ (2005) Organotin contamination in fishes with different living patterns and its implications for human health risk in Taiwan. Environ Pollut 137(2):198–208

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Lee IK, Jin SH, Steffes M, Jacobs DR Jr (2007a) Association between serum concentrations of persistent organic pollutants and insulin resistance among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002. Diabetes Care 30:622–628

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Lee IK, Porta M, Steffes M, Jacobs DR Jr (2007b) Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: Results from the National Health and Nutrition Examination Survey 1999–2002. Diabetologia 50(9):1841–1851

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Steffes MW, Sjödin A, Jones RS, Needham LL, Jacobs DR Jr (2011) Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes. PLoS One 6(1):e15977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manabe S, Wada O (1981) Triphenyltin fluoride (TPTF) as a diabetogenic agent. TPTF induces diabetic lipemia by inhibiting insulin secretion from morphologically intact rabbit B-cell. Diabetes 30(12):1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Wada O, Manabe S, Ushijima Y, Fujikura T (1984) Species difference in sensitivity to the diabetogenic action of triphenyltin hydroxide. Cell Mol Life Sci 40(4):377–378

    Article  CAS  Google Scholar 

  • Maury E, Brichard SM (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Meier U, Gressner AM (2004) Endocrine regulation of energy metabolism: Review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 50:1511–1525

    Article  CAS  PubMed  Google Scholar 

  • Merino B, Alonso-Magdalena P, Lluesma M, Ñeco P, Gonzalez A, Marroquí L, García-Arévalo M, Nadal A, Quesada I (2015) Pancreatic alpha-cells from female mice undergo morphofunctional changes during compensatory adaptations of the endocrine pancreas to diet-induced obesity. Sci Rep 5:11622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura Y, Kato M, Ogino K, Matsui H (1997) Impaired cytosolic Ca2+ response to glucose and gastric inhibitory polypeptide in pancreatic β-cells from triphenyltin-induced diabetic hamster. Endocrinology 138(7):2769–2775

    Article  CAS  PubMed  Google Scholar 

  • Neel BA, Sargis RM (2011) The paradox of progress: environmental disruption of metabolism and the diabetes epidemic. Diabetes 60:1838–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penza M, Jeremic M, Marrazzo E, Maggi A, Ciana P, Rando G, Grigolato PG, Di Lorenzo D (2011) The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose. Toxicol Appl Pharm 255 (1): 65–75

    Article  CAS  Google Scholar 

  • Porta M (2006) Persistent organic pollutants and the burden of diabetes. Lancet 368:558–559

    Article  PubMed  Google Scholar 

  • Rantakokko P, Turunen A, Verkasalo PK, Kiviranta H, Männistö S, Vartiainen T (2008) Blood levels of organotin compounds and their relation to fish consumption in Finland. Sci Total Environ 399(1–3):90–95

    Article  CAS  PubMed  Google Scholar 

  • Rantakokko P, Hallikainen A, Airaksinen R, Vuorinen PJ, Lappalainen A, Mannio J, Vartiainen T (2010) Concentrations of organotin compounds in various fish species in the Finnish lake waters and Finnish coast of the Baltic Sea. Sci Total Environ 408(12):2474–2481

    Article  CAS  PubMed  Google Scholar 

  • Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, Lillefosse H, Ma T, Pesenti S, Sonne SB, Marstrand TT, Malde MK, Du ZY, Chavey C, Fajas L, Lundebye AK, Brand CL, Vidal H, Kristiansen K, Frøyland L (2010) Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect 118:465–471

    Article  CAS  PubMed  Google Scholar 

  • Satoh H, Nguyen MA, Miles PD, Imamura T, Usui I, Olefsky JM (2004) Adenovirus-mediated chronic “hyper-resistinemia” leads to in vivo insulin resistance in normal rats. J Clin Invest 114(2):224–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shue MF, Chen TC, Bellotindos LM, Lu MC (2014) Tributyltin distribution and producing androgenic activity in water, sediment, and fish muscle. J Environ Sci Health B 49:432–438

    Article  CAS  PubMed  Google Scholar 

  • Shuldiner AR, Yang R, Gong DW (2001) Resistin, obesity and insulin resistance–the emerging role of the adipocyte as an endocrine organ. New Engl J Med 345(18):1345–1346

    Article  CAS  PubMed  Google Scholar 

  • Song R, Peng W, Zhang Y, Lv F, Wu HK, Guo J, Cao Y, Pi Y, Zhang X, Jin L, Zhang M, Jiang P, Liu F, Meng S, Zhang X, Jiang P, Cao CM, Xiao RP (2013) Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature 494:375–379

    Article  CAS  PubMed  Google Scholar 

  • Stern JH, Rutkowski JM, Schere PE (2016) Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 23:770–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Mukai H, Tanabe S, Sakayama K, Miyazaki T, Masuno H (1999) Butyltin residues in livers of humans and wild terrestrial mammals and in plastic products. Environ Pollut 106:213–218

    Article  CAS  PubMed  Google Scholar 

  • Tang CH, Hsu CH, Wang WH (2010) Butyltin accumulation in marine bivalves under field conditions in Taiwan. Mar Environ Res 70:125–132

    Article  CAS  PubMed  Google Scholar 

  • Uemura H, Arisawa K, Hiyoshi M, Kitayama A, Takami H, Sawachika F, Dakeshita S, Nii K, Satoh H, Sumiyoshi Y, Morinaga K, Kodama K, Suzuki T, Nagai M, Suzuki T (2009) Prevalence of metabolic syndrome associated with body burden levels of dioxin and related compounds among Japan’s general population. Environ Health Perspect 117:568–573

    Article  CAS  PubMed  Google Scholar 

  • Unger RH (1976) The Banting Memorial Lecture 1975. Diabetes and the alpha cell. Diabetes 25:136–151

    Article  CAS  PubMed  Google Scholar 

  • Wahlang B, Falkner KC, Gregory B, Ansert D, Young D, Conklin DJ, Bhatnagar A, McClain CJ, Cave M (2013) Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice. J Nutr Biochem 24:1587–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Article  CAS  PubMed  Google Scholar 

  • Zhang SQ, Wu T, Chen M, Guo ZZ, Yang ZB, Zuo ZH, Wang CG (2015) Chronic exposure to aroclor 1254 disrupts glucose homeostasis in male mice via inhibition of the insulin receptor signal pathway. Environ Sci Technol 49:10084–10092

    Article  CAS  PubMed  Google Scholar 

  • Zuo ZH, Chen SZ, Wu T, Zhang JL, Su Y, Chen YX, Wang CG (2011) Tributyltin causes obesity and hepatic steatosis in male mice. Environ Toxicol 26(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • Zuo ZH, Wu T, Lin MD, Zhang SQ, Yan FH, Yang ZB, Wang YC, Wang CG (2014) Chronic exposure to tributyltin chloride induces pancreatic islet cell apoptosis and disrupts glucose homeostasis in male mice. Environ Sci Technol 48(9):5179–5186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21577113). Professor John Hodgkiss is thanked for his assistance with English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonggang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Guo, J., Xi, Z. et al. Tributyltin in male mice disrupts glucose homeostasis as well as recovery after exposure: mechanism analysis. Arch Toxicol 91, 3261–3269 (2017). https://doi.org/10.1007/s00204-017-1961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-1961-6

Keywords

Navigation