Skip to main content
Log in

Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles

  • Nanotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Oxidative stress has increasingly been demonstrated as playing a key role in the biological response induced by nanoparticles (NPs). The acellular cytochrome c oxidation assay has been proposed to determine the intrinsic oxidant-generating capacity of NPs. Yet, there is a need to improve this method to allow a rapid screening to classify NPs in terms of toxicity. We adapted the cytochrome c assay to take into account NP interference, to improve its sensitivity and to develop a high-throughput method. The intrinsic oxidative ability of a panel of NPs (carbon black, Mn2O3, Cu, Ag, BaSO4, CeO2, TiO2 and ZnO) was measured with this enhanced test and compared to other acellular redox assays. To assess whether their oxidative potential correlates with cellular responses, we studied the effect of insoluble NPs on the human bronchial epithelial cell line NCI-H292 by measuring the cytotoxicity (WST-1 assay), pro-inflammatory response (IL-8 cytokine production and expression) and antioxidant defense induction (SOD2 and HO-1 expression). The adapted cytochrome c assay had a greatly increased sensitivity allowing the ranking of NPs in terms of their oxidative potential by using the developed high-throughput technique. Besides, a high oxidative potential revealed to be predictive for toxic effects as Mn2O3 NPs induced a strong oxidation of cytochrome c and a dose-dependent cytotoxicity, pro-inflammatory response and antioxidant enzyme expression. BaSO4, which presented no intrinsic oxidative potential, had no cellular effects. Nevertheless, CeO2 and TiO2 NPs demonstrated no acellular oxidant-generating capacity but induced moderate cellular responses. In conclusion, the novel cytochrome c oxidation assay could be used for high-throughput screening of the intrinsic oxidative potential of NPs. However, acellular redox assays may not be sufficient to discriminate among low-toxicity NPs, and additional tests are thus needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396(2):578–583. doi:10.1016/j.bbrc.2010.04.156

    Article  CAS  PubMed  Google Scholar 

  • Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM, Hider R, Kelly F, Kooter IM, Marano F, Maynard RL, Mudway I, Nel A, Sioutas C, Smith S, Baeza-Squiban A, Cho A, Duggan S, Froines J (2008) Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—a workshop report and consensus statement. Inhal Toxicol 20(1):75–99. doi:10.1080/08958370701665517

    Article  CAS  PubMed  Google Scholar 

  • Bourdon J, Saber AT, Jacobsen NR, Jensen KA, Madsen AM, Lamson JS, Wallin H, Møller P, Loft S, Yauk CL, Vogel UB (2012) Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part Fibre Toxicol 9(1):5. doi:10.1186/1743-8977-9-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burello E, Worth AP (2011) A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5(2):228–235. doi:10.3109/17435390.2010.502980

    Article  CAS  PubMed  Google Scholar 

  • Butt WD, Keilin D (1962) Absorption spectra and some other properties of cytochrome c and of its compounds with ligands. Proc R Soc Lond B 156:429–458. doi:10.1098/rspb.1962.0049

    Article  CAS  PubMed  Google Scholar 

  • Cassee FR, van Balen EC, Singh C, Green D, Muijser H, Weinstein J, Dreher K (2011) Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a Fuel additive. Crit Rev Toxicol 41(3):213–229. doi:10.3109/10408444

    Article  PubMed  Google Scholar 

  • Fahmy B, Cormier S (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23(7):1365–1371. doi:10.1016/j.tiv.2009.08.005

    Article  CAS  PubMed Central  Google Scholar 

  • Fukui H, Horie M, Endoh S, Kato H, Fujita K, Nishio K, Komaba LK, Maru J, Miyauhi A, Nakamura A, Kinugasa S, Yoshida Y, Hagihara Y, Iwahashi H (2012) Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem Biol Interact 198(1–3):29–37. doi:10.1016/j.cbi.2012

    Article  CAS  PubMed  Google Scholar 

  • Gilbert B, Fakra SC, Xia T, Pokhrel S, Mädler L, Nel AE (2012) The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano 6:4921–4930. doi:10.1021/nn300425a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guadagnini R, Halamoda Kenzaoui B, Walker L, Pojana G, Magdolenova Z, Bilanicova D, Saunders M, Juillerat-Jeanneret L, Marcomini A, Huk A, Dusinska M, Fjellsbø LM, Marano F, Boland S (2013) Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 9(Suppl 1):13–24. doi:10.3109/17435390.2013.829590

    Google Scholar 

  • Holder AL, Goth-Goldstein R, Lucas D, Koshland CP (2012) Particle-induced artifacts in the MTT and LDH viability assays. Chem Res Toxicol 25(9):1885–1892. doi:10.1021/tx3001708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YW, Wu C, Aronstam RS (2010) Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 3(10):4842–4859. doi:10.3390/ma3104842

    Article  CAS  Google Scholar 

  • Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon JC, Marano F (2009) Oxidative stress and pro-inflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260(1–3):142–149. doi:10.1016/j.tox.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Al-Nsour F, Rice AB, Marshburn J, Yingling B, Ji Z, Zink JI, Walker NJ, Garantziotis S (2012) Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 6(7):5820–5829. doi:10.1021/nn302235u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Garantziotis S, Rodrigues-Lima F, Dupret JM, Baeza-Squiban A, Boland S (2014) Intracellular signal modulation by nanomaterials. Adv Exp Med Biol 811:111–134. doi:10.1007/978-94-017-8739-0_7

    Article  PubMed  PubMed Central  Google Scholar 

  • Iavicoli I, Leso V, Fontana L, Bergamaschi A (2011) Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci 15(5):481–508

    CAS  PubMed  Google Scholar 

  • Jing X, Park JH, Peters TM, Thorne PS (2015) Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air–liquid interface compared with in vivo assessment. Toxicol In Vitro 29(3):502–511. doi:10.1016/j.tiv.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller J, Wohlleben W, Ma-Hock L, Strauss V, Gröters S, Küttler K, Wiench K, Herden C, Oberdörster G, van Ravenzwaay B, Landsiedel R (2014) Time course of lung retention and toxicity of inhaled particles: short-term exposure to nano-Ceria. Arch Toxicol 88(11):2033–2059. doi:10.1007/s00204-014-1349-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koman VB, Santschi C, von Moos NR, Slaveykova VI, Martin OJ (2015) Portable oxidative stress sensor: dynamic and non-invasive measurements of extracellular H2O2 released by algae. Biosens Bioelectron 68:245–252. doi:10.1016/j.bios.2014.12.044

    Article  CAS  PubMed  Google Scholar 

  • Konduru N, Keller J, Ma-Hock L, Gröters S, Landsiedel R, Donaghey TC, Brain JD, Wohlleben W, Molina RM (2014) Biokinetics and effects of barium sulfate nanoparticles. Part Fibre Toxicol 11(1):55. doi:10.1186/s12989-014-0055-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2012) Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86(7):1123–1136. doi:10.1007/s00204-012-0837-z

    Article  CAS  PubMed  Google Scholar 

  • Lai DY (2012) Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(1):1–15. doi:10.1002/wnan.162

    Article  CAS  PubMed  Google Scholar 

  • Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M, Strauss V, Treumann S, Wohlleben W, Gröters S, Wiench K, van Ravenzwaay B (2014) Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 11:16. doi:10.1186/1743-8977-11-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44(9):1689–1699. doi:10.1016/j.freeradbiomed.2008.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426. doi:10.1146/annurev-pharmtox-011112-140320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013:942916. doi:10.1155/2013/942916

    Article  PubMed  PubMed Central  Google Scholar 

  • McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22(1):116–127. doi:10.1016/j.jfda.2014.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal S, Pandey AK (2014) Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. BioMed Res Int 2014:891934. doi:10.1155/2014/891934

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina RM, Konduru NV, Jimenez RJ, Pyrgiotakis G, Demokritou P, Wohlleben W, Brain JD (2014) Bioavailability, distribution and clearance of tracheally instilled, gavaged or injected cerium dioxide nanoparticles and ionic cerium. Environ Sci Nano 1(6):561–573. doi:10.1039/C4EN00034J

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. doi:10.1126/science.1114397

    Article  CAS  PubMed  Google Scholar 

  • OECD (2010) Guidance manual for the testing of manufactured nanomaterials:oecd’s sponsorship programme; first revision; ENV/JM/MONO(2009)20/REV. Development, pp 1–92

  • Rasmussen K, Mast J, De Temmerman P-J, Verleysen E, Waegeneers N, Van Steen F, Pizzolon JC et al (2014) Titanium dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: characterisation and physico-chemical properties. In: JRC science and policy reports, ISBN: 978-92-79-38188-1, EUR 26637 EN. Publications Office of the European Union, Luxembourg. doi: 10.2788/79554

  • SCCS (Scientific Committee on Consumer Safety) (2014) Opinion on Carbon Black (nano-form) 12 December 2013, SCCS/1515/13. first revision of 27 March 2014, second revision of 15 December 2015. ISBN: 978-92-79-30120-9. doi: 10.2772/7205

  • Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15. doi:10.1186/1743-8977-10-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh C, Friedrichs S, Levin M, Birkedal R, Jensen KA, Pojana G, Wohlleben W, Schulte S, Wiench K, Turney T et al (2011) Zinc oxide NM-110, NM-111, NM-112, NM-113: characterisation and test item preparation. http://publications.jrc.ec.europa.eu/repository/handle/JRC64075. ISBN: 978-92-79-22215-3. doi: 10.2787/55008

  • Singh C, Friedrichs S, Ceccone G, Gibson P, Jensen KA, Levin M, Goenaga Infante H, Carlander D, Rasmussen K (2014) Cerium Dioxide, NM-211, NM-212, NM-213. Characterisation and test item preparation. http://publications.jrc.ec.europa.eu/repository/handle/JRC89825. ISBN: 978-92-79-38309-0. doi: 10.2788/80330

  • Stone V, Nowack B, Baun A, van den Brink N, Fv K, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408(7):1745–1754. doi:10.1016/j.scitotenv.2009.10.035

    Article  CAS  PubMed  Google Scholar 

  • Suárez G, Santschi C, Slaveykova VI, Martin OJ (2013) Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media. Sci Rep 3:3447. doi:10.1038/srep03447

    Article  PubMed  PubMed Central  Google Scholar 

  • Suárez G, Santschi C, Plateel G, Martin OJ, Riediker M (2014) Absorbance enhancement in microplate wells for improved-sensitivity biosensors. Biosens Bioelectron 56:198–203. doi:10.1016/j.bios.2013.12.063

    Article  PubMed  Google Scholar 

  • Tournebize J, Sapin-Minet A, Bartosz G, Leroy P, Boudier A (2013) Pitfalls of assays devoted to evaluation of oxidative stress induced by inorganic nanoparticles. Talanta 116:753–763. doi:10.1016/j.talanta.2013.07.077

    Article  CAS  PubMed  Google Scholar 

  • Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K (2000) Inhalation of poorly soluble particles. II. Influence Of particle surface area on inflammation and clearance. Inhal Toxicol 12(12):1113–1126. doi:10.1080/08958370050166796

    Article  CAS  PubMed  Google Scholar 

  • Val S, Hussain S, Boland S, Hamel R, Baeza-Squiban A, Marano F (2009) Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: need for multiparametric evaluation due to adsorption artifacts. Inhal Toxicol 21(Suppl 1):115–122. doi:10.1080/08958370902942533

    Article  CAS  PubMed  Google Scholar 

  • Wohlleben W, Ma-Hock L, Boyko V, Cox G, Egenolf H, Freiberger H, Hinrichsen B, Hirth S, Landsiedel R (2013) Nanospecific guidance in REACH: a comparative physical-chemical characterization of 15 materials with methodical correlations. J Ceram Sci Technol 4(2):93–104. doi:10.4416/JCST2012-0004

    Google Scholar 

  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao YP, Wang M, Li L, Rallo R, Damoiseaux R, Telesca D, Mädler L, Cohen Y, Zink JI, Nel AE (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368. doi:10.1021/nn3010087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the French Environment and Energy Management Agency (ADEME) and BASF France for Ph.D. Grant of Mathilde Delaval and BASF SE for the financial support of this work. We also acknowledge the platform “Bioprofiler” analysis and “FlexStation” of the facility “Métabolisme” (Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR 8251 CNRS, F-75205, Paris, France), respectively, for HPLC and spectrophotometric analysis. We also deeply thank Belinda Crobeddu and Linh-Chi Bui for helping to perform the DTT and antioxidant depletion assays, Arnaud Garnier for his help to create the macro in Excel to analyze the cytochrome c data and Danielle Rosa Fau for the initial implementation of the cyt c assay.

Author contributions

MD, WW and SB contributed to the data analysis and the manuscript writing and designed the experiments. MD took the measurements and cultured cells. RL and ABS contributed to the study design. All authors read, revised and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Boland.

Ethics declarations

Conflict of interest

WW and RL are employees of BASF SE, a company that produces and markets nanomaterials. All other authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1029 kb)

Appendix: Equations

Appendix: Equations

To normalize the absorbance values using the normalization factors:

$$y = A_{520} \;{\text{of}}\;{\text{reduced}}\;{\text{reference}} - A_{520} \; {\text{of}}\;{\text{sample}}$$

To take into account NP interference:

$$A = A_{\text{sample}} - A_{\text{NPs}}$$

Calculation of the oxidized/reduced cytochrome c value k.

$$k = \frac{{A_{{520{\text{nm}}}} + A_{{549{\text{nm}}}} - A_{{532{\text{nm }} }} }}{{A_{{520{\text{nm}}}} }}$$
(1)

Calculation of the percentage of reduced cytochrome c in solution.

$$\delta = \frac{{k_{\text{sample}} - k_{{{\text{oxidized}}\;{\text{reference}}}} }}{{k_{{{\text{reduced}}\;{\text{reference}}}} - k_{{{\text{oxidized}}\;{\text{reference}}}} }} \times 100$$
(2)

Calculation of percent of reduced cytochrome c in comparison with the reduced cytochrome c control.

$${\text{Reduced}}\;{\text{cyt}}\;c \,\left( {\% \;{\text{of}}\;{\text{control}}} \right) = \frac{{\delta_{\text{sample}} \left( t \right)}}{{\delta_{{{\text{reduced}}\;{\text{cyt}}\;c\;{\text{control}}}} \left( t \right)}} \times 100$$
(3)

reduced reference = fully reduced cytochrome c at t 0, oxidized reference = fully oxidized cytochrome c at t 0, reduced control = fully reduced cytochrome c at t.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delaval, M., Wohlleben, W., Landsiedel, R. et al. Assessment of the oxidative potential of nanoparticles by the cytochrome c assay: assay improvement and development of a high-throughput method to predict the toxicity of nanoparticles. Arch Toxicol 91, 163–177 (2017). https://doi.org/10.1007/s00204-016-1701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1701-3

Keywords

Navigation