Skip to main content

Advertisement

Log in

Metallothionein blocks oxidative DNA damage in vitro

  • Immunotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The role of metallothionein (MT) in mitigation of oxidative DNA damage (ODD) induced by either cadmium (Cd) or the direct oxidant hydrogen peroxide (H2O2) was systematically examined using MT-I/II double knockout (MT-null) or MT-competent wild-type (WT) cells. Both toxicants were much more lethal to MT-null cells (Cd LC50 = 6.6 μM; H2O2 LC50 = 550 μM) than to WT cells (Cd LC50 = 16.5 μM; H2O2 LC50 = 930 μM). Cd induced concentration-related MT increases in WT cells, while the basal levels were undetectable and not increased by Cd in MT-null cells. ODD, measured by the immuno-spin trapping method, was minimally induced by sub-toxic Cd levels (1 or 5 μM; 24 h) in WT cells, but markedly increased in MT-null cells (>430 %). Similarly, ODD was induced to higher levels by lower concentrations of H2O2 in MT-null cells than WT cells. Transfection of MT-I into MT-null cells reduced both Cd- and H2O2-induced cytolethality and ODD. Cd increased the expression of the oxidant defense genes, HO-1, and GSTa2 to a much greater extent in MT-null cells than in WT. Cd or H2O2 exposure increased the expression of key transport genes, Mrp1 and Mrp2, in WT cells but not in MT-null cells. MT protects against Cd- and H2O2-induced ODD in MT-competent cells possibly by multiple mechanisms, potentially including direct metal ion sequestration and sequestration of oxidant radicals by MT. MT-deficient cells appear to adapt to Cd primarily by turning on oxidant response systems, while MT-competent cells activate MT and transport systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

CdCl2 :

Cadmium chloride

DMPO:

5,5-dimethyl-1-pyrroline N-oxide

GST:

Glutathione S-transferase

GST-π:

Glutathione S-transferase pi 1

GSTα2:

Glutathione S-transferase-α2

HO-1:

Heme oxygenase 1

H2O2 :

Hydrogen peroxide

IST:

Immuno-spin trapping

LC50 :

Lethal concentration 50 %

Mrp1:

Multidrug resistance-related protein 1

Mrp2:

Multidrug resistance-related protein 2

MT:

Metallothionein

MT-null:

MT-I/II knockout

ODD:

Oxidative DNA damage

RT-PCR:

Reverse transcription-polymerase chain reaction

ROS:

Reactive oxygen species

WT:

Wild type

References

  • Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences. Biochimie 88:1549–1559

    Article  CAS  PubMed  Google Scholar 

  • Braithwaite EK, Mattie MD, Freedman JH (2010) Activation of metallothionein transcription by 4-hydroxynonenal. J Biochem Mol Toxicol 24:330–334

    Article  CAS  PubMed  Google Scholar 

  • Carrière P, Mantha M, Champagne-Paradis S, Jumarie C (2011) Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers. Biometals 24:857–874

    Article  PubMed  Google Scholar 

  • Chiaverini N, Ley MD (2010) Protective effect of metallothionein on oxidative stress-induced DNA damage. Free Radic Res 44:605–613

    Article  CAS  PubMed  Google Scholar 

  • Colangelo D, Mahboobi H, Viarengo A, Osella D (2004) Protective effect of metallothioneins against oxidative stress evaluated on wild type and MT-null cell lines by means of flow cytometry. Biometals 17:365–370

    Article  CAS  PubMed  Google Scholar 

  • Coogan TP, Bare RM, Waalkes MP (1992) Cadmium-induced DNA strand damage in cultured liver cells: reduction in cadmium genotoxicity following zinc pretreatment. Toxicol Appl Pharmacol 113:227–233

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  PubMed  Google Scholar 

  • Filipic M, Hei TK (2004) Mutagenicity of cadmium in mammalian cells: implication of oxidative DNA damage. Mutat Res 546:81–91

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11

    Article  CAS  PubMed  Google Scholar 

  • Fujishiro H, Kubota K, Inoue D, Inoue A, Yanagiya T, Enomoto S, Himeno S (2011) Cross-resistance of cadmium-resistant cells to manganese is associated with reduced accumulation of both cadmium and manganese. Toxicology 280:118–125

    Article  CAS  PubMed  Google Scholar 

  • Gioacchino MD, Petrarca C, Perrone A, Martino S, Esposito DL, Lotti LV, Mariani-Costantini R (2008) Autophagy in hematopoietic stem/progenitor cells exposed to heavy metals: biological implications and toxicological relevance. Autophagy 4:537–539

    PubMed  Google Scholar 

  • Halliwell B, Clement MV, Long LH (2000) Hydrogen peroxide in the human body. FEBS Lett 486:10–13

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann U, Kroemer HK (2004) The ABC transporters MDR1 and MRP2: multiple functions in disposition of xenobiotics and drug resistance. Drug Metab Rev 36:669–701

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2012) Monographs on the evaluation of the carcinogenic risks to humans; arsenic, metals and fibers; volume 100C “Arsenic and Arsenic Compounds”, Lyon, France, pp 41–93 (in press; download available online)

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 10:65–87

    Article  Google Scholar 

  • Joseph P, Muchnok TK, Klishis ML, Roberts JR, Antonini JM, Whong WZ, Ong T (2001) Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular calcium and reactive oxygen species. Toxicol Sci 61:295–303

    Article  CAS  PubMed  Google Scholar 

  • Jungsuwadee P, Nithipongvanitch R, Chen Y, Oberley TD, Butterfield DA, St Clair DK, Vore M (2009) Mrp1 localization and function in cardiac mitochondria after doxorubicin. Mol Pharmacol 75:1117–1126

    Article  CAS  PubMed  Google Scholar 

  • Keshava N, Zhou G, Hubbs AF, Ensell MX, Ong T (2000) Transforming and carcinogenic potential of cadmium chloride in BALB/c-3T3 cells. Mutat Res 448:23–28

    Article  CAS  PubMed  Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    Article  CAS  PubMed  Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238:215–220

    Article  CAS  PubMed  Google Scholar 

  • Knipp M (2009) Metallothioneins and platinum(II) anti-tumor compounds. Curr Med Chem 16:522–537

    Article  CAS  PubMed  Google Scholar 

  • Lazo JS, Kondo Y, Dellapiazza D, Michalska AE, Choo KH, Pitt BR (1995) Enhanced sensitivity to oxidative stress in cultured embryonic cells from transgenic mice deficient in metallothionein I and II genes. J Biol Chem 270:5506–5510

    Article  CAS  PubMed  Google Scholar 

  • Leslie EM, Liu J, Klaassen CD, Waalkes MP (2006) Acquired cadmium resistance in metallothionein-I/II(-/-) knockout cells: role of the T-type calcium channel Cacnalpha1G in cadmium uptake. Mol Pharmacol 69:629–639

    Article  CAS  PubMed  Google Scholar 

  • Lim SC, Hahm KS, Lee SH, Oh SH (2010) Autophagy involvement in cadmium resistance through induction of multidrug resistance-associated protein and counterbalance of endoplasmic reticulum stress WI38 lung epithelial fibroblast cells. Toxicology 276:18–26

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cheng ML, Yang Q, Shan KR, Shen J, Zhou Y, Zhang X, Dill AL, Waalkes MP (2007) Blood metallothionein transcript as a biomarker for metal sensitivity: low blood metallothionein transcripts in arsenicosis patients from Guizhou, China. Environ Health Perspect 115:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Mates JM, Sanchez-Jimenez FM (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32:157–170

    Article  CAS  PubMed  Google Scholar 

  • Misra RR, Smith GT, Waalkes MP (1998) Evaluation of the direct genotoxic potential of cadmium in four different rodent cell lines. Toxicology 126:103–114

    Article  CAS  PubMed  Google Scholar 

  • Nawrot TS, Van Hecke E, Thijs L, Richart T, Kuznetsova T, Jin Y, Vangronsveld J, Roels HA, Staessen JA (2008) Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ Health Perspect 116:1620–1628

    Article  CAS  PubMed  Google Scholar 

  • Nemmiche S, Chabane-Sari D, Kadri M, Guiraud P (2011) Cadmium chloride-induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion. Toxicol In Vitro 25:191–198

    Article  CAS  PubMed  Google Scholar 

  • Nzengue Y, Steiman R, Rachidi W, Favier A, Guiraud P (2012) Oxidative stress induced by cadmium in the c6 cell line: role of copper and zinc. Biol Trace Elem Res 146:410–419

    Article  CAS  PubMed  Google Scholar 

  • O’Brien P, Salacinski HJ (1998) Evidence that the reactions of cadmium in the presence of metallothionein can produce hydroxyl radicals. Arch Toxicol 72:690–700

    Article  PubMed  Google Scholar 

  • Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007

    Article  CAS  PubMed  Google Scholar 

  • Park JD, Liu Y, Klaassen CD (2001) Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology 163:93–100

    Article  CAS  PubMed  Google Scholar 

  • Qu W, Diwan BA, Liu J, Goyer RA, Dawson T, Horton JL, Cherian MG, Waalkes MP (2002) The metallothionein-null phenotype is associated with heightened sensitivity to lead toxicity and an inability to form inclusion bodies. Am J Pathol 160:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Qu W, Diwan BA, Reece JM, Bortner CD, Pi J, Liu J, Waalkes MP (2005) Cadmium-induced malignant transformation in rat liver cells: role of aberrant oncogene expression and minimal role of oxidative stress. Int J Cancer 114:346–355

    Article  CAS  PubMed  Google Scholar 

  • Quaife CJ, Cherne RL, Newcomb TG, Kapur RP, Palmiter RD (1999) Metallothionein overexpression suppresses hepatic hyperplasia induced by hepatitis B surface antigen. Toxicol Appl Pharmacol 155:107–116

    Article  CAS  PubMed  Google Scholar 

  • Ramirez DC, Gomez-Mejiba SE, Mason RP (2006) Immuno-spin trapping of DNA radicals. Nat Methods 3:123–127

    Article  CAS  PubMed  Google Scholar 

  • Ramirez DC, Gomez-Mejiba SE, Mason RP (2007) Immuno-spin trapping analyses of DNA radicals. Nat Protoc 2:512–522

    Article  CAS  PubMed  Google Scholar 

  • Report on Carcinogens (2011) National Toxicology Program, 12th edn. Department of Health and Human Services, Research Triangle Park, NC

    Google Scholar 

  • Sekine S, Ito K, Horie T (2006) Oxidative stress and Mrp2 internalization. Free Radic Biol Med 40:2166–2174

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi N, Hochadel JF, Coogan TP, Koropatnick J, Waalkes MP (1995) Sensitivity to cadmium-induced genotoxicity in rat testicular cells is associated with minimal expression of the metallothionein gene. Toxicol Appl Pharmacol 130:229–236

    Article  CAS  PubMed  Google Scholar 

  • St Croix CM, Wasserloos KJ, Dineley KE, Reynolds IJ, Levitan ES, Pitt BR (2002) Nitric oxide-induced changes in intracellular zinc homeostasis are mediated by metallothionein/thionein. Am J Physiol Lung Cell Mol Physiol 282:L185–L192

    Google Scholar 

  • Suzuki JS, Nishimura N, Zhang B, Nakatsuru Y, Kobayashi S, Satoh M, Tohyama C (2003) Metallothionein deficiency enhances skin carcinogenesis induced by 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate in metallothionein-null mice. Carcinogenesis 24:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Thévenod F (2003) Nephrotoxicity and proximal tubule: insights from cadmium. Nephron Physiol 93:87–93

    Article  Google Scholar 

  • Thévenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238:221–239

    Article  PubMed  Google Scholar 

  • Waalkes MP, Klaassen CD (1985) Concentration of metallothionein in major organs of rats after administration of various metals. Fundam Appl Toxicol 5:473–477

    Article  CAS  PubMed  Google Scholar 

  • Waalkes MP, Liu J (2009) Metallothionein in inorganic carcinogenesis, Chapter 13. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life science, vol 5. Royal Society of Chemistry, London, pp 399–412

  • Waalkes MP, Rehm S (1994) Chronic toxic and carcinogenic effects of cadmium chloride in male DBA/2NCr and NFS/NCr mice: strain-dependent association with tumors of the hematopoietic system, injection site, liver, and lung. Fundam Appl Toxicol 23:21–31

    Article  CAS  PubMed  Google Scholar 

  • Waalkes MP, Liu J, Kasprzak KS, Diwan BA (2006) Hypersusceptibility to cisplatin carcinogenicity in metallothionein-I/II double knockout mice: production of hepatocellular carcinoma at clinically relevant doses. Int J Cancer 119:28–32

    Article  CAS  PubMed  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  CAS  PubMed  Google Scholar 

  • Zuo P, Qu W, Cooper RN, Goyer RA, Diwan BA, Waalkes MP (2009) Potential role of alpha-synuclein and metallothionein in lead-induced inclusion body formation. Toxicol Sci 111:100–108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Rachel Person, Katie Pelch, John Bucher, and Nigel Walker for critical review of this manuscript. The authors also thank Matthew W. Bell for aid with the graphics. This article may be the work product of an employee or a group of employees of the NIEHS, NIH; however, the statements contained herein do not necessarily represent the statements, opinions, or conclusions of the NIEHS, NIH. or the United States Government. The content of this publication does not necessarily reflect the views or the policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Waalkes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, W., Pi, J. & Waalkes, M.P. Metallothionein blocks oxidative DNA damage in vitro. Arch Toxicol 87, 311–321 (2013). https://doi.org/10.1007/s00204-012-0927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0927-y

Keywords

Navigation