Skip to main content
Log in

The involvement of transition metal ions on iron-dependent lipid peroxidation

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The metals iron (Fe) and copper (Cu) are considered trace elements, and the metals cobalt (Co) and nickel (Ni) are known as ultra-trace elements, considering their presence in low to very low quantity in humans. The biologic activity of these transition metals is associated with the presence of unpaired electrons that favor their participation in redox reactions. They are part of important enzymes involved in vital biologic processes. However, these transition metals become toxic to cells when they reach elevated tissue concentrations and produce cellular oxidative damage. Phospholipid liposomes (0.5 mg/ml, phosphatidylcholine (PC)/phosphatidylserine (PS), 60/40) were incubated for 60 min at 37°C with 25 μM of Fe2+ in the absence and in the presence of Cu2+, Co2+, and Ni2+ (0–100 μM) with and without the addition of hydrogen peroxide (H2O2, 5–50 μM). Iron-dependent lipid peroxidation in PC/PS liposomes was assessed by thiobarbituric acid-reactive substances (TBARS) production. Metal transition ions promoted lipid peroxidation by H2O2 decomposition and direct homolysis of endogenous hydroperoxides. The Fe2+-H2O2-mediated lipid peroxidation takes place by a pseudo-second order process, and the Cu2+-mediated process by a pseudo-first order reaction. Co2+ and Ni2+ alone do not induce lipid peroxidation. Nevertheless, when they are combined with Fe2+, Fe2+-H2O2-mediated lipid peroxidation was stimulated in the presence of Ni2+ and was inhibited in the presence of Co2+. The understanding of the effects of transition metal ions on phospholipids is relevant to the prevention of oxidative damage in biologic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Athar M, Hasan S, Srivastava R (1987) Evidence for the involvement of hydroxyl radical in nickel mediated lipid peroxidation: implications for nickel carcinogenesis. Biochem Biophys Res Commun 147:1276–1281

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Cadenas E, Reiter R, Filipkowski M, Nakase Y, Chance B (1980) Organ chemiluminescence: non-invasive assay for oxidative radical reactions. Proc Natl Acad Sci USA 77:347–351

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Repetto M, Bustamante J, Boveris AD, Valdez L (2008) The concept of oxidative stress in pathology. In: Alvarez S, Evelson P (eds) Free radical pathophysiology. Research Signpost, Kerala, pp 1–17

    Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58:79–110

    Article  CAS  PubMed  Google Scholar 

  • Carter D (1995) Oxidation-reduction reactions of metal ions. Environ Health Perspect 103:17–20

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  • Chen C, Huang Y, Lin T (1998) Association between oxidative stress and cytokine production in nickel-treated rats. Arch Biochem Biophys 356:127–132

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Yang S, Wu G (2002) Free radicals, antioxidants and nutrition. Nutrition 18:872–879

    Article  CAS  PubMed  Google Scholar 

  • Fraga C, Leibovitz B, Tappel A (1988) Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 4:155–161

    Article  CAS  PubMed  Google Scholar 

  • Giulivi C, Boveris A, Cadenas E (1995) Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Arch Biochem Biophys 316:909–916

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge J (1984) Ferrous ion-EDTA-stimulated phospholipids peroxidation. A reaction changing from alkoxyl-radical to hydroxyl-radical dependent initiation. Biochem J 224:697–701

    CAS  PubMed  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydroperoxide by iron salts. Proc Roy Soc A 147:332–351

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge J (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect 110:797–799

    CAS  PubMed  Google Scholar 

  • Hfaiedh N, Allagui M, Hfaiedh M, El Feki A, Zourgui L, Croute F (2008) Protective effect of cactus (Opuntia ficus indica) cladode extract upon nickel-induced toxicity in rats. Food Chem Toxicol 46:3759–3763

    Article  CAS  PubMed  Google Scholar 

  • Hochstein P, Nordenbrand K, Ernster L (1964) Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria. Biochem Biophys Res Commun 14:323–328

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhuang Z, Frenkel K, Klein C, Costa M (1994) The role of nickel and nickel-mediated reactive oxygen species in the mechanism of nickel carcinogenesis. Environ Health Perspect 102:281–284

    Article  CAS  PubMed  Google Scholar 

  • Kasprzak K, Sunderman F, Salnikow K (2003) Nickel carcinogenesis. Mut Res 533:67–97

    CAS  Google Scholar 

  • Klotz O, Kronche D, Buchczyk D, Sies H (2003) Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J Nutr 133:1448–1451

    Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions and methods for their quantifications. Toxicol Pathol 30:620–650

    Article  CAS  PubMed  Google Scholar 

  • Krezel A, Bal W (2004) Studies of Zn (II) and Nickel (II) complexes of GSH, GSSG and their analogs shed more light on their biological relevance. Bioinorg Chem Appl 2:293–305

    Article  CAS  Google Scholar 

  • Lloyd R, Hanna P, Mason R (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888

    Article  CAS  PubMed  Google Scholar 

  • Nieboer E, Torn R, Rossetto F (1989) Superoxide dismutase activity and novel reactions with hydrogen peroxide of histidine containing nickel(II)- synthetic oligopeptide complexes and nickel(II)-induced structural changes. Biol Trace Elem Res 21:23–33

    Article  CAS  PubMed  Google Scholar 

  • Ohyashiki T, Kadoya A, Kushida K (2002) The role of Fe3+ on Fe2+-dependent lipid peroxidation in phospholipids liposomes. Chem Pharm Bull 50:203–207

    Article  CAS  PubMed  Google Scholar 

  • Oteiza P, Mackenzie G, Verstraeten S (2004) Metals in neurodegeneration: involvement of oxidants and oxidant-sensitive transcription factors. Mol Asp Med 25:103–115

    Article  CAS  Google Scholar 

  • Ozcelik D, Uzun H (2009) Copper intoxication; antioxidant defenses and oxidative damage in rat brain. Biol Trace Elem Res 127:45–52

    Article  CAS  PubMed  Google Scholar 

  • Salnikow K, Kasprzak K (2005) Ascorbate depletion: a critical step in nickel carcinogenesis. Environ Health Perspect 113:564–577

    Article  CAS  Google Scholar 

  • Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31–38

    Article  Google Scholar 

  • Tadolini B, Hakim G (1996) The mechanism of iron (III) stimulation of lipid peroxidation. Free Radic Res 25:221–227

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten S, Oteiza P (1995) Sc3+, Ga3+, In3+, Y3+, and Be2+ promote changes in membrane physical properties and facilitate Fe2+-initiated lipid peroxidation. Arch Biochem Biophys 322:284–292

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten S, Oteiza P (2002) Al(3+)-mediated changes in membrane physical properties participate in the inhibition of polyphosphoinositide hydrolysis. Arch Biochem Biophys 408:263–271

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten S, Nogueira L, Schreier S, Oteiza P (1997) Effect of trivalent metal ions on phase separation and membrane lipid packing: role in lipid peroxidation. Arch Biochem Biophys 338:121–127

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki I, Piette L (1990) ESR Spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology. J Biol Chem 266:13589–13594

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the University of Buenos Aires (B809) and from the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (PIP 6320) from Argentina.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa G. Repetto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Repetto, M.G., Ferrarotti, N.F. & Boveris, A. The involvement of transition metal ions on iron-dependent lipid peroxidation. Arch Toxicol 84, 255–262 (2010). https://doi.org/10.1007/s00204-009-0487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-009-0487-y

Keywords

Navigation