Skip to main content

Advertisement

Log in

Copper Intoxication; Antioxidant Defenses and Oxidative Damage in Rat Brain

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Even though Cu is essential to life, it can become toxic to cells, at elevated tissue concentrations. Oxidative damage due to Cu has been reported in recent studies in various tissues. In this study, we aimed to determine the effect of excess Cu on oxidative and anti-oxidative substances in brain tissue in a rat model. Sixteen male Wistar albino rats were divided into two groups: the control group, which was given normal tap water, and the experimental group, which received water containing Cu in a dose of 1 g/l. All rats were sacrificed at the end of 4 wk, under ether anesthesia. Cu concentration in the liver and in plasma alanine aminotransferase (ALT) and aspartate transaminase (AST) activities were determined. There were multiparameter changes with significant ALT and AST activity elevation and increased liver Cu concentration. In brain tissue, Cu concentration, superoxide dismutase (SOD) activities, malondialdehyde (MDA) levels and glutathione (GSH) concentrations were determined. Brain Cu concentration was significantly higher in rats receiving excess Cu, compared with control rats (p < 0.05). Our results showed that SOD activities and GSH levels in brain tissue of the Cu-intoxicated animals were significantly lower than in the control group (p < 0.01 and p < 0,001, respectively). The brain MDA levels were found to be significantly higher in the experimental group than in the control group (p < 0.001). The present results indicate that excessive Cu accumulation in the brain depressed SOD activities and GSH levels and resulted in high MDA levels in brain homogenate due to the lipid peroxidation induced by the Cu overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952S–959S

    PubMed  CAS  Google Scholar 

  2. Parmar P, Limson J, Nyokong T et al (2002) Melatonin protects against copper-mediated free radical damage. J Pineal Res 32:237–242

    Article  PubMed  CAS  Google Scholar 

  3. Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B 4:341–394

    Article  CAS  Google Scholar 

  4. Sayre L, Perry G, Smith M (1999) Redox metals and neurodegenerative disease. Curr Opin Chem Biol. 3:220–225

    Article  PubMed  CAS  Google Scholar 

  5. Rikans L, Hornbrook K (1997) Lipid peroxidation, anti-oxidant protection and aging. Biochim Biophys Acta 1362:116–127

    PubMed  CAS  Google Scholar 

  6. Hirayama K, Yasutake A (1998) Free radicals and trace elements. J Trace Elem Exp Med 11:209–217

    Article  CAS  Google Scholar 

  7. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811S

    PubMed  CAS  Google Scholar 

  8. Carri MT, Ferri A, Cozzolino M, Calabrese L, Rotilio G (2003) Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull 61:365–374

    Article  PubMed  CAS  Google Scholar 

  9. Braughler JM, Hall ED (1989) Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic Biol Med 6(3):289–301

    Article  PubMed  CAS  Google Scholar 

  10. Waggoner D, Bratnikas T, Gitlin J (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    Article  PubMed  CAS  Google Scholar 

  11. Bremner I (1998) Manifestations of copper excess. Am J Clin Nutr 67:1069S–1073S

    PubMed  CAS  Google Scholar 

  12. Clegg MS, Keen CL, Lönnerdal B, Hurley LS (1981) Influence of ashing techniques in the analyses of trace elements in animal tissue. Biol Trace Elem Res 3:107–115

    Article  CAS  Google Scholar 

  13. Brown AA, Taylor A (1985) Applications of a slotted quartz tube and flame atomic- absorption spectrometry to the analysis of biological samples. Analyst 110:579–582

    Article  PubMed  CAS  Google Scholar 

  14. Angel MF, Ramasastry SS, Swartz WM, Narayanan K, Kuhns DB, Basford RE, Futrell JW (1988) The critical relationship between free radicals and degrees of ischemia: Evidence for tissue intolerance of marginal perfusion. Plastic Reconstructive Surgery 81:233–259

    Article  CAS  Google Scholar 

  15. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  16. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    PubMed  CAS  Google Scholar 

  17. Beutler E, Duran O, Kelly MB (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    PubMed  CAS  Google Scholar 

  18. Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes and Wilson diseases. Brain Res Bull 55:175–185

    Article  PubMed  CAS  Google Scholar 

  19. Fuentealba IC, Mullins JE, Aburto EM et al (2000) Effect of age and sex on liver damage due to excess dietary copper in Fischer 344 rats. Clin Toxicol 38:709–717

    Article  CAS  Google Scholar 

  20. Aburto EM, Cribb AE, Fuentealba IC et al (2001) Morphological and biochemical assessment of the liver response to excess dietary copper in Fischer 344 rats. Can J Vet Res 65:97–103

    PubMed  CAS  Google Scholar 

  21. Evering WE, Haywood S, Elmes ME et al (1990) Histochemical and immunocytochemical evaluation of copper and metallothionein in the liver and kidney of copper-loaded rats. J Pathol 160:305–312

    Article  PubMed  CAS  Google Scholar 

  22. Evering WE, Haywood S, Bremner I (1991) The protective role of metallothionein in copper overload: I. Differential distribution of immunoreactive metallothionein in copper-loaded rat liver and kidney. Chem Biol Interact 78:283–295

    Article  PubMed  CAS  Google Scholar 

  23. Theophanides T, Anastassopoulou J (2002) Copper and carcinogenesis. Crit Rev Oncol Hematol 42(1):57–64

    Article  PubMed  CAS  Google Scholar 

  24. Winge DR, Mehra RK (1990) Host defenses against copper toxicity. Int Rev Exp Pathol 31:47–83

    Google Scholar 

  25. Linder MC, Wooten L, Cerveza P et al (1998) Copper transport. Am J Clin Nutr 67:965–971

    Google Scholar 

  26. Weisner B, Hartard C, Dieu C (1987) CSF copper concentration: anew parameter for diagnosis and monitoring therapy of Wilson’s disease with cerebral manifestion. J Neurol Sci 79:229–237

    Article  PubMed  CAS  Google Scholar 

  27. Kodama H, Okabe I, Yanagisawa M, Nomiyama H et al (1988) Does CSF copper level in Wilson disease reflect copper accumulation in the brain. Pediatr Neurol 4:35–37

    Article  PubMed  CAS  Google Scholar 

  28. Scheinberg IH, Steinlieb I (1984) Wilson’s disease. In: Smith, LH (eds) Major problems in internal medicine, vol, XXIII. Saunders, Philadelphia, p 17

    Google Scholar 

  29. Ronald L, Koretz MD (1992) Chronic hepatitis: Science and superstition. In: Gitnick, G (eds) Current Hepatology, vol. 12. Mosby Year, Chicago, pp 53–74

    Google Scholar 

  30. Galhardi CM, Diniz YS, Faine LA, Rodrigues HG, Burneiko CM, Ribas BO, Novelli EL (2004) Toxicity of copper intake: lipid profile, oxidative stress and susceptibility to renal dysfunction. Food Chem Toxicol 42:2053–2060

    Article  PubMed  CAS  Google Scholar 

  31. Zimmerman HJ, Rose M (1965) Cytotoxicity of carbon tetrachloride as measured by loss of cellular enzymes to surround serum. Am J Med 250:692–698

    Google Scholar 

  32. Sokol RJ, Devereaux M, Mierau G, Hambidge KM, Shikes H (1990) Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper overload. Gastroenterology 90:1061–1071

    Google Scholar 

  33. Sokol RJ, Devereaux MW, O'Brien K, Khandwala RA, Loehr JP (1993) Abnormal hepatic mitochondrial respiration and cytochrome C oxidase activity in rats with long-term copper overload. Gastroenterology 105:178–187

    PubMed  CAS  Google Scholar 

  34. Dillard CJ, Tappel AL (1984) Lipid peroxidation and copper toxicity in rats. Drug Chem Toxicol 7(5):447–487

    Article  Google Scholar 

  35. Chow CK (1979) Nutritional influence on cellular antioxidant defense systems. Am J Clin Nutr 32:1066–1081

    PubMed  CAS  Google Scholar 

  36. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454S

    PubMed  CAS  Google Scholar 

  37. Ohhira M, Ono M, Sekiya C (1995) Changes in free radical-metabolizing enzymes and lipid peroxides in the liver of Long–Evans with cinnamon-like coat rats. J Gastroenterol 30:619–623

    Article  PubMed  CAS  Google Scholar 

  38. Sansinanea AS, Cerone SI, Streitenberger SA, Garcia C, Auza N (1998) Oxidative effect of hepatic copper overload. Acta Physiol Pharmacol Ther Latinoam 48:25–31

    PubMed  CAS  Google Scholar 

  39. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  40. Zhang SZ, Noordin MM, Rahman SOA, Haron MJ (2000) Effects of copper overload on hepatic lipid peroxidation and antioxidant defense in rats. Vet Hum Toxicol 42:261–264

    PubMed  CAS  Google Scholar 

  41. Wang W, Ballatori N (1993) Endogeneous glutahione conjugates: Occurrence and biological functions. Pharmacol Rev 50:335–355

    Google Scholar 

  42. Pourahmad J, O’Brien PJ (2000) A comparison of hepatocyte cytotoxic mechanisms for Cu2+ and Cd2+. Toxicology 143:263–273

    Article  PubMed  CAS  Google Scholar 

  43. Hung YC, Sava VM, Blagodarsky VA et al (2003) Protection of tea melanin on hydrazineinduced liver injury. Life Sci 72:1061–1071

    Article  PubMed  CAS  Google Scholar 

  44. Hwang JM, Wang CJ, Chou FP et al (2002) Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver. Arch Toxicol 76:664–670

    Article  PubMed  CAS  Google Scholar 

  45. Hultberg B, Andersson A, Isaksson A (1997) Copper ions differ from other thiol reactive metal ions in their effects on the concentration and redox status of thiols in HeLa cell cultures. Toxicology 117:89–97

    Article  PubMed  CAS  Google Scholar 

  46. Farbiszewski R, Witek A, Skrzydlewska E (2000) N-acetylcysteine or trolox derivative mitigate the toxic effects of methanol on the antioxidant system of rat brain. Toxicology 156(1):47–55

    Article  PubMed  CAS  Google Scholar 

  47. White AR, Cappai R (2003) Neurotoxicity from glutathione depletion is dependent on extracellular trace copper. J Neurosci Res 71(6):889–897

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dervis Ozcelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozcelik, D., Uzun, H. Copper Intoxication; Antioxidant Defenses and Oxidative Damage in Rat Brain. Biol Trace Elem Res 127, 45–52 (2009). https://doi.org/10.1007/s12011-008-8219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8219-3

Keywords

Navigation