Skip to main content
Log in

Indole-3-acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidium paludigenum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Microorganisms produce plant growth regulators, such as auxins, cytokinins and gibberellins, to promote plant growth. Auxins are a group of compounds with an indole ring that have a positive effect on plant growth. Indole-3-acetic acid (IAA) is a plant growth hormone classified as an indole derivative of the auxin family. IAA biosynthesis pathways have been reported and widely studied in several groups of bacteria. Only a few studies on IAA biosynthesis pathways have been conducted in yeast. This study aimed to investigate IAA biosynthesis pathways in a basidiomycetous yeast (Rhodosporidium paludigenum DMKU-RP301). Investigations were performed both with and without a tryptophan supplement. Indole compound intermediates were detected by gas chromatography–mass spectrometry. Indole-3-lactic acid and indole-3-ethanol were found as a result of the enzymatic reduction of indole-3-pyruvic acid and indole-3-acetaldehyde, in IAA biosynthesis via an indole-3-pyruvic acid pathway. In addition, we also found indole-3-pyruvic acid in culture supernatants determined by high-performance liquid chromatography. Identification of tryptophan aminotransferase activity supports indole-3-pyruvic acid-routed IAA biosynthesis in R. paludigenum DMKU-RP301. We hence concluded that R. paludigenum DMKU-RP301 produces IAA through an indole-3-pyruvic acid pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bau YS (1981) Indole compounds in Saccharomyces cerevisiae and Aspergillus niger. Bot Bull Acad Sin 22:123–130

    CAS  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Brown HM, Purves WK (1980) Indoleacetaldehyde reductase of Cucumis sativus L: kinetic properties and role in auxin biosynthesis. Plant Physiol 65:107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreno-Lopez R, Campos-Reales N, Elmerich C, Baca BE (2000) Physiological evidence for differently regulated tryptophan dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Mol Gen Genet 264:521–530

    Article  CAS  PubMed  Google Scholar 

  • Chung KR, Tzeng DD (2004) Biosynthesis of indole-3-acetic acid by the gall-inducing fungus Ustilago esculenta. J Biol Sci 4:744–750

    Article  CAS  Google Scholar 

  • Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33:403–430

    Article  CAS  Google Scholar 

  • Deslandes B, Gariépy C, Houde A (2001) Review of microbiological and biochemical effects of skatole on animal production. Livest Prod Sci 71:193–200

    Article  Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek 106:85–125

    Article  CAS  PubMed  Google Scholar 

  • Ebenau-Jehle C, Thomas M, Scharf G, Kockelkorn D, Knapp B, Schühle K, Heider J, Fuchs G (2012) Anaerobic metabolism of indoleacetate. J Bacteriol 194:2894–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernstsen A, Sandberg G, Crozier A, Wheeler C (1987) Endogenous indoles and the biosynthesis and metabolism of indole-3-acetic acid in cultures of Rhizobium phaseoli. Planta 171:422–428

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Iacobellis NS, Sisto A (1993) Isolation of indole-3-acetic acid methyl ester, a metabolite of indole-3-acetic acid from Pseudomonas amygdali. Experientia 49:182–183

    Article  CAS  Google Scholar 

  • Fell JW, Statzell-Tallman A (1980) Rhodosporidium paludigenum sp. nov., a basidiomycetous yeast from intertidal waters of South Florida. Int J Syst Bacteriol 30:658–659

    Article  Google Scholar 

  • Glass NL, Kosuge T (1988) Role of indoleacetic acid lysine synthetase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp savastanoi. J Bacteriol 170:2367–2373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilbert M, Voll LM, Ding Y, Hofmann J, Sharma M, Zuccaro A (2012) Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytol 196:520–534

    Article  CAS  PubMed  Google Scholar 

  • Inácio J, Pereira P, Carvalho M, Fonseca A, Amaral-Collaço MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microb Ecol 44:344–353

    Article  PubMed  Google Scholar 

  • Jia SR, Cui JD, Li Y, Sun AY (2008) Production of l-phenylalanine from transcinnamic acids by high-level expression of phenylalanine ammonia lyase gene from Rhodosporidium toruloides in Escherichia coli. Biochem Eng J 42:193–197

    Article  CAS  Google Scholar 

  • Kumavath RN, Ramana ChV, Sasikala Ch (2010) l-Tryptophan catabolism by Rubrivivax benzoatilyticus JA2 occurs through indole 3-pyruvic acid pathway. Biodegradation 21:825–832

    Article  CAS  PubMed  Google Scholar 

  • Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujahid Md, Sasikala Ch, Ramana ChV (2011) Production of indole-3-acetic acid and related indole derivatives from l-tryptophan by Rubrivivax benzoatilyticus JA2. Appl Microbiol Biotechnol 89:1001–1008

    Article  CAS  PubMed  Google Scholar 

  • Nagia MM, Shaaban M, Abdel-Aziz MS, El-Zalabani SM, Hanna AG (2012) Secondary metabolites and bioactivity of two fungal strains. Egypt Pharm J 11:16–21

    Google Scholar 

  • Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108

    Article  CAS  Google Scholar 

  • Normanly J, Sovin J, Cohen J (2004) Auxin metabolism in plant hormones: biosynthesis, signal transduction, action. Kluwer, Dordrecht

    Google Scholar 

  • Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118:683–694

    Article  CAS  PubMed  Google Scholar 

  • Nutaratat P, Amsri W, Srisuk N, Arunrattiyakorn P, Limtong S (2015) Indole-3-acetic acid production by newly isolated red yeast Rhodosporidium paludigenum. J Gen Appl Microbiol 61:1–9

    Article  CAS  PubMed  Google Scholar 

  • Prinsen E, Costacurta A, Michiels K, Vanderleyden J, Onckelen HV (1993) Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol Plant-Microbe Interact 6:609–615

    Article  CAS  Google Scholar 

  • Rao RP, Hunter A, Kashpur O, Normanly J (2010) Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi. Genet Soc Am 185:211–220

    CAS  Google Scholar 

  • Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW (2008) Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol 9:339–355

    Article  CAS  PubMed  Google Scholar 

  • Robinson M, Riov J, Sharon A (1998) Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 64:5030–5032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seidel C, Walz A, Park S, Cohen JD, Ludwig-Muller J (2006) Indole-3-acetic acid protein conjugates: novel players in auxin homeostasis. Plant Biol 8:340–345

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a001438

    PubMed  PubMed Central  Google Scholar 

  • Szkop M, Bielawski W (2013) A simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acid. Antonie Van Leeuwenhoek 103:683–691

    Article  CAS  PubMed  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signaling, transport and the control of plant growth and development. Mol Cell Biol 7:847–859

    CAS  Google Scholar 

  • Tromas A, Perrot-Rechenmann C (2010) Recent progress in auxin biology. C R Biol 333:297–306

    Article  CAS  PubMed  Google Scholar 

  • Tsavkelova EA, Klimova SYu, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • Tsavkelova E, Oeser B, Oren-Young L, Israeli M, Sasson Y, Tudzynski B, Sharon A (2012) Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genet Biol 49:48–57

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yu T, Li Y, Cai D, Liu X, Lu H, Zheng XD (2009) Postharvest biocontrol of Alternaria alternata in Chinese winter jujube by Rhodosporidium paludigenum. J Appl Microbiol 107:1492–1498

    Article  CAS  PubMed  Google Scholar 

  • Wiebe MG, Koivuranta K, Penttilä M, Ruohonen L (2012) Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol 12:1–10

    Article  Google Scholar 

  • Woodward AW, Barte B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Zhao X, Shen H, Wang Q, Zhao ZK (2011) Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol 102:1803–1807

    Article  CAS  PubMed  Google Scholar 

  • Xin G, Glawe D, Doty SL (2009) Characterization of three endophytic, indole-3-acetic acid producing yeasts occurring in Populus trees. Mycol Res 113:973–980

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xu R, Ma C, Vlot AC, Klessig DF, Pichersky E (2008) Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiol 147:1034–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yimyoo T, Yongmanitchai W, Limtong S (2011) Carotenoid production by Rhodosporidium paludigenum DMKU3-LPK4 using glycerol as the carbon source. Kasetsart J (Nat Sci) 45:90–100

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Thailand Research Fund/TRF Research Team Promotion Grant (RTA 548009) under the title “Biodiversity and ecology of endophytic and epiphytic yeasts from leaves of agronomic crops in Thailand and production of plant growth promoting auxins by the selected promising strain with the elucidation of its biosynthetic pathway” and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nantana Srisuk.

Additional information

Communicated by Olaf Kniemeyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nutaratat, P., Srisuk, N., Arunrattiyakorn, P. et al. Indole-3-acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidium paludigenum . Arch Microbiol 198, 429–437 (2016). https://doi.org/10.1007/s00203-016-1202-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1202-z

Keywords

Navigation