Skip to main content
Log in

Incentive contracts under product market competition and R&D spillovers

  • Research Article
  • Published:
Economic Theory Aims and scope Submit manuscript

Abstract

This paper studies cost-reducing R&D incentives in a principal-agent model with product market competition. It argues that moral hazard does not necessarily decrease firms’ profits in this setting. In highly competitive industries, firms are driven by business-stealing incentives and exert such high levels of R&D that they burn up their profits. In the presence of moral hazard, underprovision of R&D incentives due to risk sharing can generate considerable cost savings, implying higher profits for both rivals. This result indicates firms’ incentives to adopt collusive-like behavior in the R&D market. We also examine the agents’ contracts and the profits-risk relationship when cross-firm R&D spillovers occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Prendergast (1999) provides a review of the principal-agent literature.

  2. Cost-based schemes are consistent with real-world contracting practices. In Germany, for instance, inventors’ compensation schemes based on the expected value of the R&D outputs have been established by law (German Employees’ Inventions Act passed in 1957).

  3. Aghion et al. (2005), among others, study empirically the effect of competition on incentives. Griffith (2001) and Baggs and Bettignies (2007) examine the relationship between competition and agency cost.

  4. Levin (1988) reports extensive spillovers mainly in bioengineering and microelectronics-based industries. Computer software, chemical compounds and genetic sequences are subject to spillovers due to disclosure of knowledge through publications or patents, researchers’ mobility, or even embodiment of knowledge in products (knowledge acquisition by reverse engineering). Bondt (1997) and more recently Rockett (2012) provide reviews about the effect of knowledge spillovers on R&D investments.

  5. Other works examine the effect of competition on incentives by considering changes in the number of competitors, the market size, the transportation cost or the cost of entry (Raith 2003). Nickell (1996) and Vickers (1995) review the existing literature about the effect of competition on incentives and Vives (2008) provides a survey about the effect of competition on innovation. Milliou and Petrakis (2011) study the technology adoption incentives of market rivals.

  6. Lai et al. (2009) consider cost-reducing R&D and study firms’ decision to outsource the R&D project or develop it in-house. They use a principal-agent framework and find that revenue-sharing contracts increase the chance of outsourcing.

  7. Serfes (2005) assumes a continuum of principals and agents with uniform distributions and studies the relationship between risk and performance pay (incentives) in a principal-agent market. He finds conditions under which the equilibrium relationship between risk and incentives is negative, positive or non-monotonic.

  8. Chiu et al. (2012) study the behavior of the relative and partial risk-aversion measures. Mirrlees and Raimondo (2013) analyze strategies in a continuous-time principal-agent model.

  9. Following Singh and Vives (1984), the representative consumer’s preferences are described by the standard quadratic utility function \( V(q_{i},q_{j})=A(q_{i}+q_{j})-\left[ \frac{1}{2}\left( q_{i}^{2}+q_{j}^{2}\right) +bq_{i}q_{j}\right] \). This function is separable and linear in the numeraire good. There are no income effects, and thus we can perform partial equilibrium analysis.

  10. Instead of process (cost-reducing) innovation, one could consider product innovation; i.e., quality improvement in existing products. Product innovation can be represented by an increase in consumers’ willingness to pay captured by the parameter \(A\). Firms’ profit functions remain the same implying that the optimal choices and the comparative statics in our model apply in both settings (Vives 2008).

  11. The value of \(\theta \) is specified in subsection 3.2 where assumptions on the profit functions are made.

  12. In a multi-agent framework, the monotone likelihood ratio property (MLRP) and the convexity of the distribution function condition (CDFC) are not sufficient for the first-order approach to be valid as in a single-agent setting. Itoh (1991) argues that, in a model with cross-agent interactions, a generalized CDFC for the joint probability distribution of the outputs is needed and the wage schemes must be non-decreasing. The coefficient of absolute risk aversion must also not decline too quickly. In our model, given the assumptions about the agents’ CARA preferences and the independently distributed random shocks as well as the linearity of contracts and the R&D production function, the first-order approach applies.

  13. Let the cost-of-effort function be \(\frac{k}{2}x_{i}^{2}\) where higher \(k\) indicates lower efficiency. Assumption \( \left( A.1\right) \) always holds and \(\left( A.2\right) \) requires \(\frac{4}{\left( 4-b^{2}\right) \left( 2-b\right) }<k\left( 1+kr\sigma ^{2}\right) \).

  14. Provided that the assumptions hold for the extreme value \(\theta \), they also hold for the mean of the random terms, which is zero.

  15. Appendix \(\left( A.3\right) \) provides a proof.

  16. The product \(\left( 4-b^{2}\right) \left( 2+b\right) \left( 1-b\right) \) decreases with \(b\).

  17. For a cost-of-effort function \(\frac{k}{2}x_{i}^{2}\), \(\frac{\mathrm{d}\pi ^{*}}{\mathrm{d(r}\sigma ^{2})}>0\) if and only if \(r\sigma ^{2}< \frac{1}{k}\left[ \frac{4}{\left( 4-b^{2}\right) \left( 2+b\right) \left( 1-b\right) k}-1\right] \). Note that for homogeneous-product duopolists, \(b=1\), the profits–risk relationship is positive for all parameter values; i.e., \(\pi ^{*}=\frac{\left( A- \overline{c}\right) ^{2}\left[ 9k\left( 1+kr\sigma ^{2}\right) -8\right] k\left( 1+kr\sigma ^{2}\right) }{\left[ 9k\left( 1+kr\sigma ^{2}\right) -4 \right] ^{2}}\) and \(\frac{\mathrm{d} \pi ^{*}}{\mathrm{d} (r\sigma ^{2})}=\frac{32\left( A-\overline{c}\right) ^{2}k^{2}}{\left[ 9k\left( 1+kr\sigma ^{2}\right) -4\right] ^{3}}>0\).

  18. Instead, the payment could be \(w_{i}=\alpha _{i}+\beta _{i}\left( z_{i}-hz_{j}\right) \) . In equilibrium, this contract is equivalent to that in Eq. (9).

  19. Lacetera and Zirulia (2012) consider agents that exert effort for applied research and basic research (two tasks). Efforts are unverifiable, while only effort for basic research is assumed to be diffused. The marginal costs are non-contractible and an agent’s contract is contingent on verifiable signals of her own efforts. We consider the agent to have one task and the marginal cost to be contractible. Due to spillovers, we establish the necessity of relative performance evaluation schemes based on both firms’ marginal cost reductions.

  20. Assumption \(\left( A.3\right) \) is needed only if \(h<\frac{b}{2}\). If \(h>\frac{b}{2}\), the unit cost of doing R&D needs to be large enough that the post-innovation marginal cost is positive.

  21. Any compensation scheme that is a linear transformation of this cost-based contract will induce the same level of effort in equilibrium. However, the incentive parameters will differ. For instance, if compensation is contingent on outputs, agent \(i\) receives \(w_{i}=\alpha _{i}+\beta _{i}q_{i}+\gamma _{i}q_{j}\) and the optimal compensation ratio is \( \left| -\frac{2h-b}{2-bh}\right| \). The intensity of product market competition now matters for the optimal piece rates.

  22. The proof of Corollary \({\footnotesize 1}\) is similar to that of Proposition 1 and is provided in the supplementary material.

  23. If \(\psi \left( x_{i}\right) =\frac{k}{2}x_{i}^{2}\) ,\(\frac{dx^{*}}{dh}=\frac{2\left( A- \overline{c}\right) \left[ 2\left( 2-bh\right) ^{2}-\left( 4-b^{2}\right) \left( 2+b\right) bk\left( 1+kr\sigma ^{2}\right) \right] }{\left[ \left( 4-b^{2}\right) \left( 2+b\right) k\left( 1+kr\sigma ^{2}\right) -2\left( 2-bh\right) \left( 1+h\right) \right] ^{2}}\).

  24. It is assumed that a positive constant term is added to the agent’s utility which moves this function upwards so that \(E\left\{ U_{i}\left( w_{i},x_{i}\right) \mid \varepsilon _{i}\in \Theta \right\} \ge 0\).

References

  • Aggarwal, R.K., Samwick, A.A.: Executive compensation, strategic competition and relative performance evaluation: theory and evidence. J. Financ. 54, 1999–2043 (1999)

    Article  Google Scholar 

  • Aghion, P., Bloom, N., Blundell, R., Griffith, R., Howitt, P.: Competition and innovation: an inverted-U relationship. Q. J. Econ. 120(2), 701–728 (2005)

    Google Scholar 

  • Aghion, P., Dewatripont, M., Rey, P.: Transferable control. J. Eur. Econ. Assoc. 2(1), 115–138 (2004)

    Article  Google Scholar 

  • Aghion, P., Griffith, R., Howitt, P.: Vertical integration and competition. Am. Econ. Rev. 96(2), 97–102 (2006)

    Article  Google Scholar 

  • Alonso, R., Dessein, W., Matouschek, N.: When does coordination require centralization? Am. Econ. Rev. 98(1), 145–179 (2008)

    Article  Google Scholar 

  • Amir, M., Amir, R., Jin, J.Y.: Sequencing R&D decisions in a two-period duopoly with spillovers. Econ. Theory 15(2), 297–317 (2000)

    Article  Google Scholar 

  • Baggs, J., De Bettignies, J.-E.: Product market competition and agency cost. J. Ind. Econ. 55(2), 289–323 (2007)

    Article  Google Scholar 

  • Bondt, R.D.: Spillovers and innovative activity. Int. J. Ind. Organ. 15, 1–28 (1997)

    Article  Google Scholar 

  • Chiu, W.H., Eeckhoudt, L., Rey, B.: On relative and partial risk attitudes: theory and implications. Econ. Theory 50(1), 151–167 (2012)

    Article  Google Scholar 

  • D’Aspremont, C., Jacquemin, A.: Cooperative and noncooperative R&D in duopoly with spillovers. Am. Econ. Rev. 80(3), 641–642 (1990)

    Google Scholar 

  • Fershtman, C., Judd, K.L.: Equilibrium incentives in oligopoly. Am. Econ. Rev. 77(5), 927–940 (1987)

    Google Scholar 

  • Griffith, R.: Product market competition, efficiency and agency cost: an empirical analysis. Manuscr. Inst. Fiscal Stud. (2001)

  • Hart, O.: The market as an incentive mechanism. Bell J. Econ. 14(2), 366–382 (1983)

    Article  Google Scholar 

  • Hart, O., Holmström, B.: A theory of firm scope. Q. J. Econ. 125(2), 483–513 (2010)

    Article  Google Scholar 

  • Hermalin, B.E.: The effects of competition on executive behavior. RAND J. Econ. 23(3), 305–327 (1992)

    Article  Google Scholar 

  • Holmström, B.: Moral hazard and observability. Bell J. Econ. 10, 74–91 (1979)

    Article  Google Scholar 

  • Holmström, B., Milgrom, P.: Aggregation and linearity in the provision of intertemporal incentives. Econometrica 55(2), 303–328 (1987)

    Article  Google Scholar 

  • Holmström, B., Tirole, J.: The theory of the firm. In: Schmalensee, R., Willig, R.D. (eds.) Handbook of Industrial Organization, vol. 1, pp. 61–133. Elsevier, Amsterdam (1989)

    Google Scholar 

  • Itoh, H.: Incentives to help in multi-agent situations. Econometrica 59, 611–636 (1991)

    Article  Google Scholar 

  • Kamien, M., Muller, E., Zang, I.: Research joint ventures and R&D cartels. Am. Econ. Rev. 85(5), 1293–1306 (1992)

    Google Scholar 

  • Lacetera, N., Zirulia, L.: Individual preferences, organization, and competition in a model of R&D incentive provision. J. Econ. Behav. Organ. 84(2), 550–570 (2012)

    Article  Google Scholar 

  • Lai, E.L.-C., Riezman, R., Wang, P.: Outsourcing of innovation. Econ. Theory 38(3), 485–515 (2009)

    Article  Google Scholar 

  • Levin, R.C.: Appropriability, R&D spending, and technological performance. Am. Econ. Rev. 78(2), 424–428 (1988)

    Google Scholar 

  • Milliou, C., Petrakis, E.: Timing of technology adoption and product market competition. Int. J. Ind. Organ. 29, 513–523 (2011)

    Article  Google Scholar 

  • Mirrlees, J., Raimondo, R.C.: Strategies in the principal-agent model. Econ. Theory 53(3), 605–656 (2013)

    Article  Google Scholar 

  • Nickell, S.: Competition and corporate performance. J. Polit. Econ. 104, 724–746 (1996)

    Article  Google Scholar 

  • Piccolo, S., D’Amato, M., Martina, M.: Product market competition and organizational slack under profit-target contracts. Int. J. Ind. Organ. 26, 1389–1406 (2008)

    Article  Google Scholar 

  • Prendergast, C.: The provision of incentives in firms. J. Econ. Lit. 37, 7–63 (1999)

    Article  Google Scholar 

  • Qiu, L.: On the dynamic efficiency of Bertrand and Cournot equilibria. J. Econ. Theory 75(1), 213–229 (1997)

    Article  Google Scholar 

  • Raith, M.: Competition, risk and managerial incentives. Am. Econ. Rev. 93, 1425–1436 (2003)

    Article  Google Scholar 

  • Rockett, K.: Perspectives on the knowledge-based society: an introduction to the special issue. Econ. Open Access Open-Assess. E J. 6(2012–35), 1–22 (2012)

    Article  Google Scholar 

  • Schmidt, K.M.: Managerial incentives and product market competition. Rev. Econ. Stud. 64(2), 191–213 (1997)

    Article  Google Scholar 

  • Serfes, K.: Risk sharing versus incentives: contract design under two-sided heterogeneity. Econ. Lett. 88(3), 343–349 (2005)

    Article  Google Scholar 

  • Serfes, K.: Endogenous matching in a market with heterogeneous principals and agents. Int. J. Game Theory 36, 587–619 (2008)

    Article  Google Scholar 

  • Singh, N., Vives, X.: Price and quantity competition in a differentiated duopoly. RAND J. Econ. 15(4), 546–554 (1984)

    Article  Google Scholar 

  • Sklivas, S.D.: The strategic choice of managerial incentives. RAND J. Econ. 18(3), 452–458 (1987)

    Article  Google Scholar 

  • Vickers, J.: Concepts of competition. Oxford Econ. Pap. 47, 1–23 (1995)

    Google Scholar 

  • Vives, X.: Innovation and competitive pressure. J. Ind. Econ. 56(3), 419–469 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia Chalioti.

Additional information

I am indebted to Lambros Pechlivanos for the very useful discussions on this topic. I am also grateful to Dan Bernhardt, George Deltas, Johannes Hörner, Katharine Rockett, Larry Samuelson, Konstantinos Serfes and Spyros Vassilakis for their comments and suggestions. I give special thanks to Rabah Amir, Costas Arkolakis, Dirk Bergemann, Gary Biglaiser, Claude D’Aspremont, Raymond De Bondt, Mathias Dewatripont, Mehmet Ekmekci, Vitor Farinha, Gianluca Femminis, Sebastian Kranz, Silvana Krasteva, Vijay Krishna, Eric Maskin, Chrysovalantou Milliou, Ana Rodrigues, Philipp Strack, Rodrigo Velez, Nicolaos Vettas, Anastasios Xepapadeas and the participants at various conferences and meetings. Financial support from the State Scholarships Foundation in Greece is also acknowledged.

This paper is based on Chapter 3 of my thesis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 63 KB)

Appendix

Appendix

1.1 Proof of Lemma 1

By Eqs. (1) and (2), agent \(i\)’s expected utility isFootnote 24

$$\begin{aligned} E\left\{ U_{i}\left( x_{i}\right) \mid \varepsilon _{i}\in \Theta \right\} =-e^{-r\left[ \alpha _{i}+\beta _{i}x_{i}-\psi (x_{i})\right] }E\left\{ e^{-r\beta _{i}\varepsilon _{i}}\mid \varepsilon _{i}\in \Theta \right\} \text {.} \end{aligned}$$
(13)

The conditional density of \(\varepsilon _{i}\) is

$$\begin{aligned} f\left( \varepsilon _{i}\mid \Theta \right) =\frac{\frac{1}{\sigma }\phi \left( \frac{\varepsilon _{i}}{\sigma }\right) }{\varPhi \left( \frac{\theta }{ \sigma }\right) -\varPhi \left( \frac{-\theta }{\sigma }\right) }\text {, } -\theta \le \varepsilon _{i}\le \theta \text { where }\phi \left( \frac{ \varepsilon _{i}}{\sigma }\right) =\frac{1}{\sqrt{2\pi }}e^{-\frac{1}{2} \left( \frac{\varepsilon _{i}}{\sigma }\right) ^{2}}\text {.} \end{aligned}$$
(14)

By Eqs. (13) and (14), and letting \(\widehat{r}\equiv -r\), we have

$$\begin{aligned} \int \limits _{-\theta }^{\theta }e^{\widehat{r}\beta _{i}\varepsilon _{i}}f\left( \varepsilon _{i}\right) \mathrm{d}\varepsilon _{i}&= \frac{1}{\sigma \sqrt{2\pi }} \int \limits _{-\theta }^{\theta }e^{\widehat{r}\beta _{i}\varepsilon _{i}}e^{-\frac{1 }{2}\left( \frac{\varepsilon _{i}}{\sigma }\right) ^{2}} \mathrm{d} \varepsilon _{i}\\&= \frac{1}{\sigma \sqrt{2\pi }}\int \limits _{-\theta }^{\theta }e^{-\frac{\left( \varepsilon _{i}^{2}-2\sigma ^{2}\widehat{r}\beta _{i}\varepsilon _{i}\right) }{2\sigma ^{2}}} \mathrm{d} \varepsilon _{i}\\&= \frac{1}{\sigma \sqrt{2\pi }}\int \limits _{-\theta }^{\theta }e^{-\frac{\left[ \varepsilon _{i}^{2}-2\varepsilon _{i}\left( \sigma ^{2}\widehat{r}\beta _{i}\right) +\left( \sigma ^{2}\widehat{r}\beta _{i}\right) ^{2}-\left( \sigma ^{2}\widehat{r}\beta _{i}\right) ^{2}\right] }{2\sigma ^{2}} } \mathrm{d}\varepsilon _{i}\\&= \frac{1}{\sigma \sqrt{2\pi }}\int \limits _{-\theta }^{\theta }e^{- \frac{\left( \varepsilon _{i}-\sigma ^{2}\widehat{r}\beta _{i}\right) ^{2}}{ 2\sigma ^{2}}}e^{\frac{\left( \sigma ^{2}\widehat{r}\beta _{i}\right) ^{2}}{ 2\sigma ^{2}}} \mathrm{d} \varepsilon _{i}\\&= e^{\frac{\widehat{r}^{2}\beta _{i}^{2}\sigma ^{2}}{2}}\frac{1}{\sigma \sqrt{2\pi }}\int \limits _{-\theta }^{\theta }e^{-\frac{1}{2}\left( \frac{ \varepsilon _{i}-\sigma ^{2}\widehat{r}\beta _{i}}{\sigma }\right) ^{2}} \mathrm{d} \varepsilon _{i}\\&= e^{\frac{\widehat{r}^{2}\beta _{i}^{2}\sigma ^{2}}{2} }\int \limits _{-\theta }^{\theta }\frac{1}{\sigma }\phi \left( \frac{\varepsilon _{i}-\sigma ^{2}\widehat{r}\beta _{i}}{\sigma }\right) \mathrm{d} \varepsilon _{i}\\&= e^{\frac{\widehat{r}^{2}\beta _{i}^{2}\sigma ^{2}}{2}}\left[ \varPhi \left( \frac{\theta -\sigma ^{2}\widehat{r}\beta _{i}}{\sigma }\right) -\varPhi \left( \frac{-\theta -\sigma ^{2}\widehat{r}\beta _{i}}{\sigma }\right) \right] . \end{aligned}$$
$$\begin{aligned} \hbox {Thus, }E\left\{ e^{\widehat{r}\beta _{i}\varepsilon _{i}}\mid \varepsilon _{i}\in \Theta \right\}&= \frac{\int _{-\theta }^{\theta }e^{ \widehat{r}\beta _{i}\varepsilon _{i}}f\left( \varepsilon _{i}\right) \mathrm{d}\varepsilon _{i}}{\varPhi \left( \frac{\theta }{\sigma }\right) -\varPhi \left( \frac{-\theta }{\sigma }\right) }\\&= e^{\frac{\widehat{r}^{2}\beta _{i}^{2}\sigma ^{2}}{2}}\frac{\varPhi \left( \frac{\theta -\sigma ^{2}\widehat{r }\beta _{i}}{\sigma }\right) -\varPhi \left( \frac{-\theta -\sigma ^{2}\widehat{ r}\beta _{i}}{\sigma }\right) }{\varPhi \left( \frac{\theta }{\sigma }\right) -\varPhi \left( \frac{-\theta }{\sigma }\right) }=e^{\frac{\widehat{r}^{2}\beta _{i}^{2}\sigma ^{2}}{2}}\Omega _{i}\text {,} \end{aligned}$$

where \(\Omega _{i}\equiv \frac{\varPhi \left( \frac{\theta -\sigma ^{2}\widehat{r} \beta _{i}}{\sigma }\right) -\varPhi \left( \frac{-\theta -\sigma ^{2}\widehat{r }\beta _{i}}{\sigma }\right) }{\varPhi \left( \frac{\theta }{\sigma }\right) -\varPhi \left( \frac{-\theta }{\sigma }\right) }\). By Eq. (13), we get

$$\begin{aligned} E\left\{ U_{i}\left( w{i},x_{i}\right) \mid \varepsilon _{i}\in \Theta \right\}&= -\Omega _{i}e^{-r\left[ \alpha _{i}+\beta _{i}x_{i}-\psi (x_{i}) \right] }e^{\frac{r^{2}\beta _{i}^{2}\sigma ^{2}}{2}}\\&= -\Omega _{i}e^{-r\left[ \alpha _{i}+\beta _{i}x_{i}-\frac{r}{2}\beta _{i}^{2}\sigma ^{2}-\psi (x_{i}) \right] }\text {.} \end{aligned}$$

Given that \(\Omega _{i}\) is positive and independent of \(x_{i}\), agent \(i\)’s optimization problem is equivalent to choosing

$$\begin{aligned} x_{i}\in \arg \max \widetilde{U}_{i}\left( x_{i}\right) \equiv \alpha _{i}+\beta _{i}x_{i}-\frac{r}{2}\beta _{i}^{2}\sigma ^{2}-\psi (x_{i})\text {, } \end{aligned}$$

where \(\widetilde{U}_{i}\left( x_{i}\right) \) is the certainty equivalent of agent \(i\)’s utility. Thus, given CARA preferences and linear contracts, agent \(i\)’s problem has a closed form solution even if \(\varepsilon _{i}\) follows a truncated normal distribution which is symmetric around the mean.

1.2 Proof of Lemma 2

The existence of an equilibrium in R&D requires showing that each firm’s R&D reaction function—denoted by \(r_{i}\left( x_{j}\right) \) for any \(i\) and \(j\)—is a (monotone) contraction, and then applying the Contraction Mapping Theorem. Assumption \(\left( A.2\right) \) suffices to guarantee that \(\pi _{i}\) is strictly concave in \(x_{i}\), and thus \( r_{i}\left( x_{j}\right) \) is single-valued and continuous. Given that the action set is compact, an equilibrium exists. The interiority of this equilibrium requires \(\pi _{i}\) to be strictly increasing when \(x_{i}=0\) for all \(x_{_{j}}\in X\); i.e., \(\frac{\partial \pi _{i}\left( 0,x_{j}\right) }{\partial x_{i}}=\frac{4}{\left( 4-b^{2}\right) \left( 2+b\right) }\left( A- \overline{c}-\frac{bx_{j}}{2-b}\right) -\left[ 1+r\sigma ^{2}\psi ^{\prime \prime }\left( 0\right) \right] \psi ^{\prime }\left( 0\right) >0\). Given that \(\psi ^{\prime }(0)=0\) and \(\frac{\partial \pi _{i}\left( 0,x_{j}\right) }{\partial x_{i}}\) decreases with \(x_{j}\), if the latter inequality holds for \(x_{j}=\overline{c}+\theta \), it will also hold for all \(x_{j}\in X\), which is guaranteed by assumption \(\left( A.1\right) \). Firm \(i\)’s reaction function, \(r_{i}\left( x_{j}\right) \), must also be strictly decreasing. Let

$$\begin{aligned} H\equiv \frac{\partial ^{2}\pi _{i}\left( r_{i}\left( x_{j}\right) ,x_{j}\right) }{\partial x_{i}^{2}}=\frac{8}{\left( 4-b^{2}\right) ^{2}}- \left[ 1+r\sigma ^{2}\psi ^{\prime \prime }\left( x_{i}\right) \right] \psi ^{\prime \prime }\left( x_{i}\right) \text {,} \end{aligned}$$
(15)

which is negative by assumption \(\left( A.2\right) \). Then, taking \(\frac{d\left( \partial \pi _{i}/\partial x_{i}\right) }{dx_{j}}=0,\) the equation \(\frac{ \partial ^{2}\pi _{i}\left( r_{i}\left( x_{j}\right) ,x_{j}\right) }{ \partial x_{i}\partial x_{j}}+\frac{\partial ^{2}\pi _{i}\left( r_{i}\left( x_{j}\right) ,x_{j}\right) }{\partial x_{i}^{2}}r_{i}^{\prime }\left( x_{j}\right) =0\) implies

$$\begin{aligned} r_{i}^{\prime }\left( x_{j}\right) =-\frac{\frac{\partial ^{2}\pi _{i}\left( r_{i}\left( x_{j}\right) ,x_{j}\right) }{\partial x_{i}\partial x_{j}}}{ \frac{\partial ^{2}\pi _{i}\left( r_{i}\left( x_{j}\right) ,x_{j}\right) }{ \partial x_{i}^{2}}}=\frac{4b}{\left( 4-b^{2}\right) ^{2}H}\text {,} \end{aligned}$$
(16)

which is also negative for any \(b>0\) since \(H<0\).

The uniqueness of this equilibrium requires \(-1<r_{i}^{\prime } \left( x_{j}\right) <1\) for all \(x_{j}\in X\). Given that \(r_{i}^{\prime }\left( x_{j}\right) <0\), it suffices to show that \(-1<r_{i}^{\prime }\left( x_{j}\right) \) which is also implied by assumption \(\left( A.2\right) \). Therefore, given that the game in the product market has a unique equilibrium, the subgame perfect equilibrium of the overall game is also unique.

1.3 Proof of Proposition 1

We first need to examine how the optimal effort \(x^{*}\) changes with \(r\sigma ^{2}\). We have

$$\begin{aligned} \frac{d\left( \partial \pi _{i}/\partial x_{i}\right) }{d\left( r\sigma ^{2}\right) }=0\Leftrightarrow \frac{\partial \left( \partial \pi _{i}/\partial x_{i}\right) }{\partial \left( r\sigma ^{2}\right) }+\frac{\partial ^{2}\pi _{i}}{\partial x_{i}^{2}}\frac{\mathrm{d} x^{*}}{\mathrm{d} \left( r\sigma ^{2}\right) }=0\text {.} \end{aligned}$$
(17)

To find the effect of \(r\sigma ^{2}\) on the marginal profitability of R&D, we take the derivative \(\frac{\partial \pi _{i}}{\partial x_{i}}\) and substitute \(x_{j}\) with the optimal value \(x^{*}\). We differentiate with respect to \(r\sigma ^{2}\), taking \(x_{i}\) as constant, and obtain

$$\begin{aligned} \frac{\partial \left( \partial \pi _{i}/\partial x_{i}\right) }{\partial \left( r\sigma ^{2}\right) }=-\frac{4b}{\left( 4-b^{2}\right) ^{2}}\frac{ d x^{*}}{d \left( r\sigma ^{2}\right) }-\psi ^{\prime \prime }\left( x_{i}\right) \psi ^{\prime }\left( x_{i}\right) . \end{aligned}$$
(18)

Then, we substitute \(x_{i}\) with \(x^{*}\). By (15) and (18), Eq. (17) gives

$$\begin{aligned} \frac{\mathrm{d} x^{*}}{\mathrm{d} \left( r\sigma ^{2}\right) }=\frac{\psi ^{\prime \prime }\left( x^{*}\right) \psi ^{\prime }\left( x^{*}\right) }{H-\frac{4b}{\left( 4-b^{2}\right) ^{2}}}\text {,} \end{aligned}$$
(19)

which is negative since \(H<0\) and \(\psi \left( .\right) \) is convex; i.e., \( \frac{\mathrm{d} x^{*}}{\mathrm{d} \left( r\sigma ^{2}\right) }<0\) for all \(b,r\) and \(\sigma ^{2}\). Having \(\frac{\mathrm{d}\psi (x^{*})}{\mathrm{d} (r \sigma ^2)}=\psi ^{\prime }(x^{*})\frac{\mathrm{d} x^{*}}{\mathrm{d} (r\sigma ^{2})}\), Eq. (7) implies that \(\pi ^{*}\) increases with \(r\sigma ^{2}\), if and only if,

$$\begin{aligned} \frac{2}{\left( 2+b\right) ^{2}}\left( A-\overline{c}+x^{*}\right) \frac{ \mathrm{d} x^{*}}{\mathrm{d} \left( r\sigma ^{2}\right) }>\left[ \frac{1}{2} \psi ^{\prime }\left( x^{*}\right) +r\sigma ^{2}\frac{\mathrm{d} \psi ^{\prime }\left( x^{*}\right) }{\mathrm{d} \left( r\sigma ^{2}\right) }+ \frac{\mathrm{d} x^{*}}{\mathrm{d} \left( r\sigma ^{2}\right) }\right] \psi ^{\prime }\left( x^{*}\right) \text {.} \end{aligned}$$
(20)

Given also that \(\frac{2}{\left( 2+b\right) ^{2}}\left( A-\overline{c}+x^{*}\right) =\frac{2-b}{2}\left[ 1+r\sigma ^{2}\psi ^{\prime \prime }\left( x^{*}\right) \right] \psi ^{\prime }\left( x^{*}\right) \) by Eq. (6) and \(\frac{d \psi ^{\prime }\left( x^{*}\right) }{d \left( r\sigma ^{2}\right) }=\psi ^{\prime \prime }\left( x^{*}\right) \frac{d x^{*}}{d \left( r\sigma ^{2}\right) }\), inequality (20) becomes

$$\begin{aligned} -b\left[ 1+r\sigma ^{2}\psi ^{\prime \prime }\left( x^{*}\right) \right] \frac{\mathrm{d} x^{*}}{\mathrm{d} \left( r\sigma ^{2}\right) }>\psi ^{\prime }\left( x^{*}\right) \text {.} \end{aligned}$$
(21)

In (21), we substitute \(\frac{\mathrm{d} x^{*}}{\mathrm{d} \left( r\sigma ^{2}\right) }\) with Eq. (19). Using also Eq. (15), we obtain the condition in Proposition 1.

1.4 Proof of Proposition 2

      The interiority of the equilibrium requires, if efforts are strategic substitutes, \(\pi _{i}\) to be strictly increasing when \( x_{i}=0\); \(\frac{\partial \pi _{i}\left( 0,x_{j}\right) }{\partial x_{i}}=\frac{2\left( 2-bh\right) }{\left( 4-b^{2}\right) \left( 2+b\right) } \left[ A-\overline{c}+\frac{\left( 2h-b\right) x_{j}}{2-b}\right] >0\). If this inequality holds for \(x_{j}=\overline{c}+\theta \), it will also hold for all \(x_{_{j}}\) since \( h<\frac{b}{2}\). This is guaranteed by assumption \(\left( A.3\right) \). If \(h> \frac{b}{2}\), \(\frac{\partial \pi _{i}\left( 0,x_{j}\right) }{\partial x_{i}} \) is always positive. The uniqueness of the equilibrium requires \( -1<r_{i}^{\prime }\left( x_{j}\right) <1\). Let

$$\begin{aligned} M\equiv \frac{\partial ^{2}\pi _{i}\left( r_{i}\left( x_{j}\right) ,x_{j}\right) }{\partial x_{i}^{2}}=\frac{2\left( 2-bh\right) ^{2}}{\left( 4-b^{2}\right) ^{2}}-\left[ 1+r\sigma ^{2}\psi ^{\prime \prime }\left( x_{i}\right) \right] \psi ^{\prime \prime }\left( x_{i}\right) \text {,} \end{aligned}$$
(22)

which is negative by assumption \(\left( A.4\right) \). The slope of firm \(i\)’s reaction function is \(r_{i}^{\prime }\left( x_{j}\right) =\frac{2\left( 2-bh\right) \left( b-2h\right) }{\left( 4-b^{2}\right) ^{2}M}\). If \(h<\frac{b}{2}\), given that \(r_{i}^{\prime }\left( x_{j}\right) <0\), it suffices to show that \(r_{i}^{\prime }\left( x_{j}\right) >-1\). This requires \(\frac{2\left( 2-bh\right) \left( 2-bh+b-2h\right) }{\left( 4-b^{2}\right) ^{2}}<\left[ 1+r\sigma ^{2}\psi ^{\prime \prime }\left( x_{i}\right) \right] \psi ^{\prime \prime }\left( x_{i}\right) \) which is implied by assumption \( \left( A.4\right) \). If \(h>\frac{b}{2}\), given that \(r_{i}^{\prime }\left( x_{j}\right) >0\), it suffices to show that \(r_{i}^{\prime }\left( x_{j}\right) <1\). This requires \(\frac{2\left( 2-bh\right) \left( 2-bh+2h-b \right) }{\left( 4-b^{2}\right) ^{2}}<\left[ 1+r\sigma ^{2}\psi ^{\prime \prime }\left( x_{i}\right) \right] \psi ^{\prime \prime }\left( x_{i}\right) \) which is also implied by assumption \(\left( A.4\right) \). Thus, a unique interior equilibrium exists.

Given Eqs. (10) and (11), and that the mean of the random shocks is zero, we find the optimal R&D incentives and effort by considering the Lagrange function of principal \(i\)’s problem in expected terms:

$$\begin{aligned} L_{i}&= \left( q_{i}^{*}\right) ^{2}-\alpha _{i}-(\beta _{i}+h\gamma _{i})x_{i}-(h\beta _{i}+\gamma _{i})x_{j}+\lambda _{i}\left[ \beta _{i}+h\gamma _{i}-\psi ^{\prime }\left( x_{i}\right) \right] \nonumber \\&+\mu _{i}\left[ \alpha _{i}+(\beta _{i}+h\gamma _{i})x_{i}+(h\beta _{i}+\gamma _{i})x_{j}-\psi (x_{i})\right. \nonumber \\&-\left. \frac{r}{2}\left[ \left( \beta _{i}+h\gamma _{i}\right) ^{2}+\left( h\beta _{i}+\gamma _{i}\right) ^{2}\right] \sigma ^{2}\right] . \end{aligned}$$
(23)

The expected output is given by Eq. (12). Omitting details, the Kuhn–Tucker condition with respect to \(\alpha _{i}\) gives \(-1+\mu _{i}=0\Leftrightarrow \mu _{i}=1\), implying that the \(IR_{i}\) constraint binds at the optimum. Given also that the equilibrium is interior, the profit-maximizing conditions become

$$\begin{aligned} \frac{\partial L_{i}}{\partial \lambda _{i}}&= \beta _{i}+h\gamma _{i}-\psi ^{\prime }\left( x_{i}\right) =0\text {, }\forall i \end{aligned}$$
(24)
$$\begin{aligned} \frac{\partial L_{i}}{\partial \beta _{i}}&= \lambda _{i}-r\left[ \beta _{i}+h\gamma _{i}+h\left( h\beta _{i}+\gamma _{i}\right) \right] \sigma ^{2}=0, \forall i \end{aligned}$$
(25)
$$\begin{aligned} \frac{\partial L_{i}}{\partial \gamma _{i}}&= h\lambda _{i}-r\left[ h\left( \beta _{i}+h\gamma _{i}\right) +h\beta _{i}+\gamma _{i}\right] \sigma ^{2}=0, \forall i \end{aligned}$$
(26)
$$\begin{aligned} \frac{\partial L_{i}}{\partial x_{i}}&= \frac{2\left( 2-bh\right) }{\left( 4-b^{2}\right) \left( 2+b\right) }\left[ A-\overline{c} +\frac{ \left( 2-bh\right) x_{i}-\left( b-2h\right) x_{j}}{2-b}\right] \nonumber \\&-\lambda _{i}\psi ^{\prime \prime }\left( x_{i}\right) -\psi ^{\prime }\left( x_{i}\right) =0\text {, }\forall i,j \end{aligned}$$
(27)

By Eqs. (25) and (26), we have

$$\begin{aligned} \frac{\beta _{i}+h\gamma _{i}+h\left( h\beta _{i}+\gamma _{i}\right) }{ h\left( \beta _{i}+h\gamma _{i}\right) +h\beta _{i}+\gamma _{i}}=\frac{1}{h} . \end{aligned}$$
(28)

Solving with respect to \(\gamma _{i}\), we obtain \(\gamma _{i}^{*}=-h\beta _{i}^{*}\). By Eq. (24), we also have \(\left( 1-h^{2}\right) \beta _{i}^{*}=\psi ^{\prime }\left( x_{i}^{*}\right) \). Since \(\lambda _{i}=r\sigma ^{2}\psi ^{\prime }\left( x_{i}\right) \) by Eq. (25), the optimal effort level \(x^{*}\) solves Eq. (27) which implies the form in Proposition 2.

1.5 Effect of competition on optimal effort

The effect of \(b\) on the marginal profitability of R&D is given by

$$\begin{aligned} \frac{\partial \left( \partial \pi _{i}/\partial x_{i}\right) }{\partial b}&= \frac{2\left[ 4b-h(4+b^{2})\right] }{\left( 4-b^{2}\right) ^2\left( 2+b\right) }[A\!-\!\bar{c}\!+\!(1+h)x^{*}]\\&\quad +\frac{2(2-bh)}{4-b^2}\left[ \frac{2h-b}{4-b^2}\left( \frac{{d}x^*}{{d}b}\right) -\frac{A-\bar{c}}{(2+b)^2}-\frac{1+h}{(2+b)^2}x^*\right] . \end{aligned}$$

Given also Eq. (22), the decomposition \(\frac{\partial \left( \partial \pi _{i}/\partial x_{i}\right) }{\partial b}+\frac{\partial ^{2}\pi _{i}}{\partial x_{i}^{2}}\frac{\mathrm{d} x^{*}}{\mathrm{d} b}=0\) implies

$$\begin{aligned} \frac{d x^{*}}{db}\!=\!\left( \frac{4}{4-b^{2}}\right) \frac{ \left[ 3b-2-\left( 2-b+b^{2}\right) h\right] \left[ A-\overline{c}+\left( 1+h\right) x^{*}\right] }{\left( 4-b^{2}\right) \left( 2+b\right) \left[ 1+r\sigma ^{2}\psi ^{\prime \prime }\left( x^{*}\right) \right] \psi ^{\prime \prime }\left( x^{*}\right) -2\left( 2-bh\right) \left( 1+h\right) }\text {.} \end{aligned}$$

The denominator is positive by assumption \(\left( A.4\right) \). Thus, the derivative \(\frac{d x^{*}}{db}\) is positive, if and only if, \(3b-2-\left( 2-b+b^{2}\right) h>0\Leftrightarrow b>\frac{3+h-\left( 9-2h-7h^{2}\right) ^{1/2}}{2h}\). By L’Hôpital’s rule, it is \( \lim _{h\rightarrow 0^{+}}\left\{ \frac{3+h-\left( 9-2h-7h^{2}\right) ^{1/2} }{2h}\right\} =\lim _{h\rightarrow 0^{+}}\left\{ \frac{1}{2}\left( 1+\frac{ 1+7h}{\left[ \left( 1-h\right) \left( 9+7h\right) \right] ^{1/2}}\right) \right\} =\frac{2}{3}\).

1.6 Effect of spillovers on optimal effort

The effect of spillovers on the marginal probability of R&D is

$$\begin{aligned} \frac{\partial \left( \partial \pi _{i}/\partial x_{i}\right) }{\partial h}&= - \frac{2b}{\left( 4-b^{2}\right) \left( 2+b\right) }\left[ A-\overline{c} +\left( 1+h\right) x^{*}\right] \\&+\frac{2\left( 2-bh\right) }{4-b^{2}} \left[ \frac{2h-b}{4-b^2} \left( \frac{{d}x^*}{{d}b}\right) +\frac{1}{2+b}x^*\right] \text {.} \end{aligned}$$

Thus, given Eq. (22), the decomposition of the effect of spillovers on effort implies

$$\begin{aligned} \frac{\mathrm{d} x^{*}}{\mathrm{d} h}=2\frac{\left[ 2-b\left( 1+2h\right) \right] x^{*}-b\left( A-\overline{c}\right) }{\left( 4-b^{2}\right) \left( 2+b\right) \left[ 1+r\sigma ^{2}\psi ^{\prime \prime }\left( x^{*}\right) \right] \psi ^{\prime \prime }\left( x^{*}\right) -2\left( 2-bh\right) \left( 1+h\right) } \end{aligned}$$
(29)

where \(x^{*}\) satisfies Proposition 2. The denominator in Eq. (29) is positive by assumption \(\left( A.4\right) \). Thus, the derivative \(\frac{\mathrm{d} x^{*}}{\mathrm{d} h}\) is positive only if \(h< \frac{2-b}{2b}\) and \(\frac{b\left( A-\overline{c}\right) }{2-b\left( 1+2h\right) }<x^{*}\), which becomes \( \frac{2\left( 2-bh\right) ^{2}\left( A-\overline{c}\right) }{\left[ 2-b\left( 1+2h\right) \right] \left( 4-b^{2}\right) \left( 2+b\right) }< \left[ 1+r\sigma ^{2}\psi ^{\prime \prime }\left( x^{*}\right) \right] \psi ^{\prime }\left( x^{*}\right) \) by Proposition 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalioti, E. Incentive contracts under product market competition and R&D spillovers. Econ Theory 58, 305–328 (2015). https://doi.org/10.1007/s00199-014-0811-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00199-014-0811-5

Keywords

JEL Classification

Navigation