Skip to main content

Advertisement

Log in

Molecular changes after shockwave therapy in osteoarthritic knee in rats

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This study investigated the molecular changes of DKK-1, MMP13, Wnt-5a and \(\upbeta \)-catenin after extracorporeal shockwave therapy (ESWT) in anterior cruciate ligament transected (ACLT) osteoarthritic (OA) knee in rats. 27 male Spraque-Dawley rats were divided into three groups. Group I was the control one and received sham knee arthrotomy but no ACLT or ESWT. Group II underwent ACLT, but no ESWT. Group III underwent ACLT and received ESWT. The animals were killed at 12 weeks, and the harvested knee specimens were subjected to histopathological examination and immunohistochemical analysis. Radiographs of the knees were obtained at 0 and 12 weeks. At 12 weeks, radiographs of group II showed more arthritic changes with formation of osteochondral fragments, whereas very subtle arthritis was noted in groups I and III. In histopathological examination, group II showed a significant increase of Mankin score and a decrease of subchondral bone as compared to groups I and III. Group III showed a significant decrease of Mankin score and an increase of subchondral bone, with the data comparable to group I. In immunohistochemical analysis, group II showed significant increases of DKK-1 and MMP13 and decreases of Wnt-5a and \(\upbeta \)-catenin in articular cartilage and subchondral bone as compared to groups I and III. Group III showed significant decreases of DKK-1 and MMP13 and increases of Wnt-5a and \(\upbeta \)-catenin, with the data comparable to group I. In conclusion, the application of ESWT causes molecular changes that are consistent with the improvement in subchondral bone remodeling and chondroprotective effect in ACLT OA knees in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oettmeier, R., Abendroth, K.: Osteoarthritis and bone:osteologic types of osteoarthritis of the hip. Skeletal. Radiol. 18, 165–174 (1989)

    Article  Google Scholar 

  2. Lane, N.E., Nevitt, M.C.: Osteoarthritis, bone mass, and fractures: how are they related? Arthritis. Rheum. 46, 1–4 (2002)

    Article  Google Scholar 

  3. Mankin, H.J., Dorfman, H., Lippiello, L., Zarins, A.: Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips: II. Correlation of morphology with biochemical and metabolic data. J. Bone. Joint. Surg. Am. 53, 523–537 (1971)

    Google Scholar 

  4. Hayami, T., Funaki, H., Yaoeda, K., Mitui, K., Yamagiwa, H., Tokunaga, K., et al.: Expression of the cartilage-derived anti-angiogenic factor chondromudulin-I decreases in the early stage of experimental osteoarthritis. J. Rheumatol. 30, 2207–2217 (2003)

    Google Scholar 

  5. Little, C., Smith, S., Ghosh, P., Bellenger, C.: Histopathological and immunohistochemical evaluation of joint changes in a model of osteoarthritis induced by lateral meniscectomy in sheep. J. Rheumatol. 24, 2199–2209 (1997)

    Google Scholar 

  6. Radin, E.L., Rose, R.M.: Role of subchondral bone in the initiation and progression of cartilage damage. Clin. Orthop. 213, 34–40 (1986)

    Google Scholar 

  7. Burr, D.M., Schaffler, M.B.: The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Micros. Res. Tech. 37, 343–357 (1997)

    Article  Google Scholar 

  8. Burr, D.B.: The importance of subchondral bone in osteoarthrosis. Curr. Opin. Rheumatol. 10, 256–262 (1998)

    Article  Google Scholar 

  9. Dedrick, D.K., Goulet, R., Huston, L., Goldstein, S.A., Bole, G.G.: Early bone changes in experimental osteoarthritis using microscopic computed tomography. J. Rheumatol. Suppl. 27, 44–45 (1991)

    Google Scholar 

  10. Goker, B., Sumner, D.R., Hurwitz, D.E., Block, J.A.: Bone mineral density varies as a function of the rate of joint space narrowing in the hip. J. Rheumatol. 27, 735–738 (2000)

    Google Scholar 

  11. Ratcliffe, A., Seibel, M.J.: Biochemical markers of osteoarthritis. Curr. Opin. Rheumatol. 277, 21352–21360 (1990)

    Google Scholar 

  12. Harada, S.I., Rodan, G.A.: Control of osteoblast function and regulation of bone mass. Nature 423, 35–41 (2003)

    Article  Google Scholar 

  13. Wang, C.J., Weng, L.H., Ko, J.Y., Sun, Y.C., Yang, Y.J., Wang, F.S.: Extracorporeal Shockwave Therapy Shows Chondroprotective Effects in Osteoarthritic Rat Knee. Arch. Orthop. Trauma. Surg. 131, 1153–1158 (2011)

    Article  Google Scholar 

  14. Takahashi, K., Yamazaki, M., Saisu, T., et al.: Gene expression for extracellular matrix proteins in shockwave-induced osteogenesis in rats. Calcif. Tissue. Int. 74, 187–193 (2004)

    Google Scholar 

  15. Aguilera, O., Munoz, A., Esteller, M., Fraga, M.F.: Epigenetic alterations of the Wnt-beta catenin pathway in human disease. Endocr. Metab. Immune. Disord. Drug. Targets. 7, 13–21 (2007)

    Article  Google Scholar 

  16. Hall, C.L., Keller, E.T.: The role of Wnt in bone metastases. Cancer. Metastasis. Rev. 25, 551–558 (2006)

    Article  Google Scholar 

  17. Nishimura, R., Yoneda, T.: Role of Wnt in bone formation. Clin. Calcium. 16, 817–822 (2006)

    Google Scholar 

  18. Aslan, H., Ravid-Amir, O., Clancy, B.M., et al.: Advanced molecular profiling in vivo detects novel function of dickkopf-3 in the regulation of bone formation. J. Bone. Mineral. Res. 21, 1935–1945 (2006)

    Article  Google Scholar 

  19. Niehrs, C.: Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25, 7469–7481 (2006)

    Article  Google Scholar 

  20. MacDonald, B.T., Joiner, D.M., Oyserman, S.M., Sharma, P., Goldstein, S.A., He, X., Hauschka, P.V.: Bone mass is inversely proportional to DKK-1 levels in mice. Bone 41, 331–339 (2007)

    Article  Google Scholar 

  21. Li, J., Sarosi, I., Cattley, R.C., et al.: DKK-1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39, 754–766 (2006)

    Article  Google Scholar 

  22. Morvan, F., Boulukos, K., Clement-Lacroix, P., et al.: Detection of a single allele of the DKK-1 gene leads to an increase in bone formation and bone mass. J. Bone. Mineral. Res. 21, 934–945 (2006)

    Article  Google Scholar 

  23. Ohnaka, K., Taniguchi, H., Kawate, H., Nawata, H., Takayanagi, R.: Glucocorticoid enhances the expression of dickkopf-1 in human osteoblast: novel mechanism of glucocorticoid-induced osteoporosis. Biochem. Biophys. Res. Commun. 318, 259–264 (2004)

    Article  Google Scholar 

  24. Pritzker, K.P., Gay, S., Jimenez, S.A., Ostergaard, K., Pelletier, J.P., Revell, P.A., Salter, D., van den Berg, W.B.: Osteoarthritis cartilage histopathology grading and staging. Osteoarthr. Cartil. 14, 13–29 (2006)

    Article  Google Scholar 

  25. Bettica, P., Cline, G., Hart, D.J., Meyer, J., Spector, T.D.: Evidence for increased bone resorption in patients with progressive knee osteoarthritis: Longitudinal results from the Chingford study. Arthritis Rheum. 46, 3178–3184 (2002)

    Article  Google Scholar 

  26. Botter, S.M., van Osch, G.J., Waarsing, J.H., et al.: Quantification of subchondral bone changes in a murine osteoarthritis model using micro-CT. Biorheology 43, 379–388 (2006)

    Google Scholar 

  27. Hayami, T., Pickarski, M., Zhuo, Y., Wesolowski, G.A., Rodan, G.A., Duong, L.T.: Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38, 234–243 (2006)

    Article  Google Scholar 

  28. Henson, F.M.D., Vincent, T.A.: Alterations in the vimentin cytoskeleton in response to single impact load in an in vitro model of cartilage damage in the rat. BMC Musculoskelet. Disord. 9, 94 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Grants were received in total and partial in the support of this study. The source of grants is National Science Council (NSC 98-2314-B-182A-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-J. Wang.

Additional information

Communicated by S. H. R. Hosseini.

Appendix

Appendix

See Table 3.

Table 3 The components of the modified Mankin scoring system

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CJ., Sun, YC., Wu, CT. et al. Molecular changes after shockwave therapy in osteoarthritic knee in rats. Shock Waves 26, 45–51 (2016). https://doi.org/10.1007/s00193-013-0480-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-013-0480-5

Keywords

Navigation