Skip to main content

Advertisement

Log in

On the impact of airborne gravity data to fused gravity field models

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In gravity field modeling, fused models that utilize satellite, airborne and terrestrial gravity observations are often employed to deal with erroneous terrestrially derived gravity datasets. These terrestrial datasets may suffer from long-wavelength systematic errors and inhomogeneous data coverage, which are not prevalent in airborne and satellite datasets. Airborne gravity acquisition plays an essential role in gravity field modeling, providing valuable information of the Earth’s gravity field at medium and short wavelengths. Thus, assessing the impact of airborne gravity data to fused gravity field models is important for identifying problematic regions. Six study regions that represent different gravity field variability and terrestrial data point-density characteristics are investigated to quantify the impact of airborne gravity data to fused gravity field models. The numerical assessments of these representative regions resulted in predictions of airborne gravity impact for individual states and provinces in the USA and Canada, respectively. Prediction results indicate that, depending on the terrestrial data point-density and gravity field variability, the expected impact of airborne gravity can reach up to 3mGal (in terms of standard deviation) in Canada and Alaska (over areas of 1\(^{\circ }\,\times \, \)1\(^{\circ })\). However, in the mainland US region, small changes are expected (0.2–0.4 mGal over areas of 1\(^{\circ }\,\times \, \)1\(^{\circ })\) due to the availability of high spatial resolution terrestrial data. These results can serve as a guideline for setting airborne gravity data acquisition priorities and for improving future planning of airborne gravity surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amjadiparvar B, Sideris MG, Rangelova EV (2013) North American height datums and their offsets: evaluation of the GOCE-based global geopotential models in Canada and the USA. J Appl Geodesy 7(3):191–203

    Article  Google Scholar 

  • Andersen OB, Knudsen P, Berry PA (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geodesy 84(3):191–199

    Article  Google Scholar 

  • Bolkas D, Fotopoulos G, Braun A (2015) Comparison and fusion of satellite, airborne and terrestrial field data using wavelet decomposition. J Surv Eng 04015010

  • Bruinsma SL, Förste C, Abrikosov O, Lemoine JM, Marty JC, Mulet S, Rio MH, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41(21):7508–7514

    Article  Google Scholar 

  • Bruton A (2000) Improving the accuracy and resolution of SINS/DGPS airborne gravimetry. Ph.D. thesis, Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada, UCGE Report no. 20145

  • Burrus CS, Gopinath RA, Guo H (1998) Introduction to wavelets and wavelet transforms. A Primer, Prentice-Hall, Upper Saddle River, New Jersey

  • Daubechies I (1992) Ten lectures on wavelets. CBMS-NSF Regional Conf. Ser. in Appl. Math., Society for Industrial and Applied Mathematics, Philadelphia, PA

  • de Castro DL, Fuck RA, Phillips JD, Vidotti RM, Bezerra FH, Dantas EL (2014) Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil. Tectonophysics 614:128–145

    Article  Google Scholar 

  • Forsberg R (1993) Modelling the fine-structure of the geoid: methods, data requirements and some results. Surv Geophys 14(4–5):403–418

    Article  Google Scholar 

  • Fullea J, Fernàndez M, Zeyen H, Vergés J (2007) A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones. Tectonophysics 430(1):97–117

    Article  Google Scholar 

  • Heck B (1990) An evaluation of some systematic error sources affecting terrestrial gravity anomalies. J Geodesy 64(1):88–108

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical Geodesy. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Huang J, Véronneau M, Mainville A (2008) Assessment of systematic errors in the surface gravity anomalies over North America using the GRACE gravity model. Geophys J Int 175(1):46–54

    Article  Google Scholar 

  • Kern M, Schwarz KKPP, Sneeuw N (2003) A study on the combination of satellite, airborne, and terrestrial gravity data. J Geodesy 77(3–4):217–225

    Article  Google Scholar 

  • Mallat S (1998) A wavelet tour of signal processing. Academic Press, New York

    Google Scholar 

  • McKenzie D, Fairhead D (1997) Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies. J Geophys Res-Sol Ea (1978–2012) 102(B12):27523–27552

  • Pajares G, De La Cruz JM (2004) A wavelet-based image fusion tutorial. Pattern Recogn. 37(9):1855–1872

    Article  Google Scholar 

  • Panet I, Jamet O, Diament M, Chambodut A (2004) Modelling the Earth’s gravity field using wavelet frames. In: Jekeli C, Bastos L, Fernandes J (eds) Proceedings in the IAG Sc. Ass., IAG Symposium GGSM 2004, 129:48–53, Porto, Portugal, 30 Aug.-3 Sept. 2004, Springer, Berlin

  • Panet I, Kuroishi Y, Holschneider M (2011) Wavelet modeling of the gravity field by domain decomposition methods: an example over Japan. Geophys J Int 184:203–219

    Article  Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843

    Article  Google Scholar 

  • Pal SK, Majumdar TJ, Pathak VK, Narayan S, Kumar U, Goswami OP (2015). Utilization of high-resolution EGM2008 gravity data for geological exploration over the Singhbhum-Orissa Craton, India. Geocarto Int, pp 1–20

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res-Sol Ea 117:B4Rummel R, Balmino G, Johannessen J, Visser PNAM, Woodworth P (2002) Dedicated gravity field missions-principles and aims. J Geodyn 33(1):3–20

    Google Scholar 

  • Rummel R, Balmino G, Johannessen J, Visser PNAM, Woodworth P (2002) Dedicated gravity field missions-principles and aims. J Geodyn 33(1):3–20

  • Saleh J, Li X, Wang YM, Roman DR, Smith DA (2013) Error analysis of the NGS’ surface gravity database. J Geodesy 87(3):203–221

    Article  Google Scholar 

  • Schwarz KP, Sideris MG, Forsberg R (1990) The use of FFT techniques in physical geodesy. Geophys J Int 100(3):485–514

    Article  Google Scholar 

  • Smith DA (2007) The GRAV-D project: gravity for the redefinition of the American Vertical Datum. National Oceanic and Atmospheric Administration (NOAA). http://www.ngs.noaa.gov/GRAV-D/pubs/GRAVD_v2007_12_19.pdf. Accessed 12 October 2015

  • Smith DA, Holmes SA, Li X, Guillaume S, Wang YM, Bürki B, Roman DR, Damiani TM (2013) Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: the Geoid Slope Validation Survey of 2011. J Geodesy 87(10–12):885–907

    Article  Google Scholar 

  • van der Meijde M, Pail R, Bingham R, Floberghagen R (2015) GOCE data, models, and applications: a review. Int J Appl Earth Obs 35:4–15

    Article  Google Scholar 

  • Woollard GP (1959) Crustal structure from gravity and seismic measurements. J Geophys Res 64(10):1521–1544

    Article  Google Scholar 

  • Yi W, Rummel R (2014) A comparison of GOCE gravitational models with EGM2008. J Geodyn 73:14–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Bolkas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolkas, D., Fotopoulos, G. & Braun, A. On the impact of airborne gravity data to fused gravity field models. J Geod 90, 561–571 (2016). https://doi.org/10.1007/s00190-016-0893-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0893-x

Keywords

Navigation