Skip to main content
Log in

Error analysis of the NGS’ surface gravity database

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Are the National Geodetic Survey’s surface gravity data sufficient for supporting the computation of a 1 cm-accurate geoid? This paper attempts to answer this question by deriving a few measures of accuracy for this data and estimating their effects on the US geoid. We use a data set which comprises \({\sim }1.4\) million gravity observations collected in 1,489 surveys. Comparisons to GRACE-derived gravity and geoid are made to estimate the long-wavelength errors. Crossover analysis and \(K\)-nearest neighbor predictions are used for estimating local gravity biases and high-frequency gravity errors, and the corresponding geoid biases and high-frequency geoid errors are evaluated. Results indicate that 244 of all 1,489 surface gravity surveys have significant biases \({>}2\) mGal, with geoid implications that reach 20 cm. Some of the biased surveys are large enough in horizontal extent to be reliably corrected by satellite-derived gravity models, but many others are not. In addition, the results suggest that the data are contaminated by high-frequency errors with an RMS of \({\sim }2.2\) mGal. This causes high-frequency geoid errors of a few centimeters in and to the west of the Rocky Mountains and in the Appalachians and a few millimeters or less everywhere else. Finally, long-wavelength (\({>}3^{\circ }\)) surface gravity errors on the sub-mGal level but with large horizontal extent are found. All of the south and southeast of the USA is biased by +0.3 to +0.8 mGal and the Rocky Mountains by \(-0.1\) to \(-0.3\) mGal. These small but extensive gravity errors lead to long-wavelength geoid errors that reach 60 cm in the interior of the USA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

1-D FFT:

      1 Dimensional fast Fourier transform

CO:

      Crossover

COE:

      Crossover error

CONUS:

      The conterminous USA

DEM:

      Digital elevation model

DMA:

      Defense Mapping Agency; now called National       Geospatial-Intelligence Agency

DNSC:

      Danish National Space Center

DTED:

      Digital Terrain Elevation Data

ECO:

      External crossover

ECOE:

      External crossover error

EGM2008:

      Earth Gravitational Model of 2008

GOCE:

      Gravity and Ocean Circulation Explorer

GPS:

      Global Positioning System

GRACE:

      Gravity Recovery and Climate Experiment

GRAV-D:

      Gravity for the Redefinition of the American       Vertical Datum

ICO:

      Internal crossover

ICOE:

      Internal crossover error

IGSN71:

      International Gravity Standardization Net of       1971

KNN:

      \(K\)-nearest-neighbors

mGal:

      Milli-Gals

MSL:

      Mean sea level

NAD:

      North American Datum

NGS:

      National Geodetic Survey

NGVD:

      National Geodetic Vertical Datum

RTM:

      Residual Terrain Model

SRTM:

      Shuttle Radar Topography Mission

USGS:

      US Geological Survey

References

  • Ågren J, Kiamehr R, Sjöberg LE (2006) Numerical comparison of two strategies for geoid and quasigeoid determination over Sweden. Poster presentation to the IUGG general meeting, Perugia, Italy, 2–12 July

  • Andersen OB, Knudsen P, Berry PAM (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84(3):191–199

    Article  Google Scholar 

  • Bae TS, Lee J, Kwon JH, Hong CK (2012) Update of the precision geoid determination in Korea. Geophys Prospect 60(3):555–571

    Article  Google Scholar 

  • Blake A, Zisserman A (1987) Visual reconstruction. MIT Press, Cambridge

    Google Scholar 

  • Blitzkow D (1999) Toward a 10’ resolution geoid for South America: a comparison study. Phys Chem Earth A 24(1):33–39

    Article  Google Scholar 

  • Denker H, Roland M (2005) Compilation and evaluation of a consistent marine gravity data set surrounding Europe. In: Sanso F (ed) A window on the future of geodesy—Sapporo, Japan, June 30–July 11, 2003. International association of geodesy, vol 128. Springer, Berlin, pp 248–253

    Google Scholar 

  • Denker H, Barriot JP, Barzaghi R, Fairhead D, Forsberg R, Ihde J, Kenyers A, Marti U, Sarrailh M, Tziavos IN (2008) The development of the European gravimetric geoid model EGG07. International association of geodesy, vol 133, part 2, pp 177–185

  • Featherstone WE, Kirby FJ, Hirt C, Filmer MS, Claessens SJ, Brown NJ, Hu G, Johnston GM (2011) The AUSGeoid09 model of the Australian height datum. J Geod 85:133–150

    Article  Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling. Report 355, Dept. of Geod. Sci. and Surv., Ohio State University, Columbus

  • Forsberg R, Strykowski G, Iliffe JC, Ziebart M, Cross PA, Tscherning CC, Cruddace P, Stewart K, Bray, Finch O (2003) OSGM02: a new geoid model of the British Isles. In: Tziavos IN (ed) Proceedings of the 3rd meeting of the international gravity and geoid commission of the international association of geodesy, pp 132–137

  • Haagmans R, de Min E, van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral. Manuscr Geod 18: 227–241

    Google Scholar 

  • Heck B (1990) An evaluation of some systematic error sources affecting terrestrial gravity anomalies. Bull Geod 64:88–108

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San Francisco

    Google Scholar 

  • Hittelman A, Scheibe D, Goad C (1982) U.S. land gravity. Key to Geophysical Records Documentation no. 18, US Department of Commerce, National Oceanic and Atmospheric Administration, Boulder, CO

  • Huang J, Véronneau M, Mainville A (2008) Assessment of systematic errors in the surface gravity anomalies over North America using the GRACE gravity model. Geophys J Int 175:46–54

    Article  Google Scholar 

  • Hwang C (1997) Analysis of some systematic errors affecting altimeter-derived sea surface gradient with application to geoid determination over Taiwan. J Geod 71:113–130

    Article  Google Scholar 

  • Jekeli C (2009) Omission error, data requirements, and the fractal dimension of the geoid. In: Proceedings of the VII Hotine-Marussi symposium on mathematical geodesy, Rome, 6–10 June 2009

  • Junyong C, Jiancheng L, Jinsheng N, Dingbo C, Ji Z, Yanping Z (2001) On a high resolution and high accuracy geoid in China mainland. Acta Geodaetica et Cartographica Sinica 30(2):95–100

    Google Scholar 

  • Kirkpatric S, Gelatt CD, Vecchi MP (1983) Simulated annealing. Science 220:671–680

    Google Scholar 

  • Kuroishi Y (2001) An improved gravimetric geoid model for Japan, GEOID98 and relationships to marine gravity data. J Geod 74: 745–755

    Google Scholar 

  • Li X, Wang YM (2009) Comparisons of geoid models over Alaska computed with different Stokes’ kernel modifications. J Geod Sci 1(2):136–142

    Article  Google Scholar 

  • Mayer-Gürr T, Kurtenbach E, Eicker A (2010) ITG-GRACE2010: the new GRACE gravity. Geophysical research abstracts, 12, EGU2010-2446, EGU General, Assembly, 2010

  • Medvedev P, Nepoklonov V (2002) New results of the geoid and gravity field model determination in Russia. Presented at the 3rd meeting of the international gravity and geoid commission of the international association of geodesy, Thessaloniki, Greece

  • Merry C (2003) The African geoid project and its relevance to the unification of African vertical reference frames. In: 2nd FIG Regional conference, Marrakech, Morocco

  • Milbert DG (1991) Computing GPS-derived orthometric heights with the GEOID90 geoid height model. Technical Papers of the 1991 ACSM-ASPRS Fall Convention, Atlanta, Oct 28 to Nov 1, 1991. American Congress on Surveying and Mapping. Washington, DC, pp A46–A55

  • Moose RE (1986) The national geodetic survey gravity network. NOAA technical report NOS121 NGS 39, Rockville, MD

  • O’Rourke J (1998) Computational geometry in C, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JF (2012) The development and evaluation of Earth Gravitational Model EGM2008. J Geophys Res 117:B04406

    Article  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1990) Numerical recipes. Cambridge University Press, New York

    Google Scholar 

  • Roman DR, Wang YM, Henning W, Hamilton J (2004) Assessment of the new national geoid height model, GEOID03. In: Proceedings of the American congress on surveying and mapping 2004 meeting

  • Slater JA, Garvey G, Johnston C, Haase J, Heady B, Kroenung G, Little J (2006) The SRTM data “finishing” process and products. Photogramm Eng Remote Sens 72(3):237–247

    Google Scholar 

  • Smith DA, Milbert DG (1999) The GEOID96 high-resolution geoid height model for the United States. J Geod 73:219–236

    Article  Google Scholar 

  • Smith DA, Roman DR (2001) GEOID99 and G99SSS: one arc-minute models for the United States. J Geod 75:469–490

    Article  Google Scholar 

  • Smith DA (2007) The GRAV-D project: gravity for the redefinition of the American Vertical Datum. NOAA website: http://www.ngs.noaa.gov/GRAV-D/pubs/GRAV-D_v2007_12_19.pdf

  • Tscherning CC, Knudsen P, Forsberg R (1991) Description of the GRAVSOFT package. Technical Report, Geophysical Institute, University of Copenhagen

  • Véronneau M, Huang J (2007) The Canadian gravimetric geoid model 2005 (CGG2005). Geodetic Survey Division, Natural Resources Canada, Ottawa, Canada

  • Wang YM, Roman DR (2004) Effect of high resolution altimetric gravity anomalies on the North American geoid computations. EOS Trans AGU 85(17):Jt. Assem. Suppl., Abstract G51B-09

  • Wang YM, Denker H, Saleh J, Li X, Roman D, Smith D (2010) A comparison of different geoid computation procedures in the US Rocky Mountains. In: 2nd International gravity field symposium, Fairbanks, Alaska

  • Wang YM, Saleh J, Li XP, Roman D (2012) The US gravimetric geoid of 2009 (USGG2009): model development and evaluation. J Geod 86:165–180

    Article  Google Scholar 

  • Wessel P, Watts AB (1988) On the accuracy of marine gravity measurements. J Geophys Res 93:393–413

    Article  Google Scholar 

  • Wong L, Gore R (1969) Accuracy of geoid heights from modified Stokes kernels. Geophys J R Astron Soc 18:81–91

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Geod. editors and reviewers and colleagues who reviewed this paper before its publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarir Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, J., Li, X., Wang, Y.M. et al. Error analysis of the NGS’ surface gravity database. J Geod 87, 203–221 (2013). https://doi.org/10.1007/s00190-012-0589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-012-0589-9

Keywords

Navigation