Skip to main content
Log in

Contribution of mass density heterogeneities to the quasigeoid-to-geoid separation

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The geoid-to-quasigeoid separation is often computed only approximately as a function of the simple planar Bouguer gravity anomaly and the height of the computation point while disregarding the contributions of terrain geometry and anomalous topographic density as well as the sub-geoid masses. In this study we demonstrate that these contributions are significant and, therefore, should be taken into consideration when investigating the relation between the normal and orthometric heights particularly in the mountainous, polar and geologically complex regions. These contributions are evaluated by applying the spectral expressions for gravimetric forward modelling and using the EIGEN-6C4 gravity model, the Earth2014 datasets of terrain, ice thickness and inland bathymetry and the CRUST1.0 sediment and (consolidated) crustal density data. Since the global crustal density models currently available (e.g. CRUST1.0) have a limited accuracy and resolution, the comparison of individual density contributions is—for consistency—realized with a limited spectral resolution up to a spherical harmonic degree 360 (or 180). The results reveal that the topographic contribution globally varies between \(-\)0.33 and 0.57 m, with maxima in Himalaya and Tibet. The contribution of ice considerably modifies the geoid-to-quasigeoid separation over large parts of Antarctica and Greenland, where it reaches \(\sim \)0.2 m. The contributions of sediments and bedrock are less pronounced, with the values typically varying only within a few centimetres. These results, however, have still possibly large uncertainties due to the lack of information on the actual sediment and bedrock density. The contribution of lakes is mostly negligible; its maxima over the Laurentian Great Lakes and the Baikal Lake reach only several millimetres. The contribution of the sub-geoid masses is significant. It is everywhere negative and reaches extreme values of \(-\)4.43 m. According to our estimates, the geoid-to-quasigeoid separation globally varies within \(-\)4.19 and 0.26 m while the corresponding values computed according to a classical definition are only negative and reach extreme values of \(-\)3.5 m. A comparison of these results reveals that inaccuracies caused by disregarding the terrain geometry and mass density heterogeneities distributed within the topography and below the geoid surface can reach \(\pm \)2 m or more in the mountainous regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allister NA, Featherstone WE (2001) Estimation of Helmert orthometric heights using digital barcode levelling, observed gravity and topographic mass-density data over part of Darling Scarp, Western Australia. Geom Res Aust 75:25–52

    Google Scholar 

  • Andersen OB (2010) The DTU10 gravity field and Mean sea surface, (2010) second international symposium of the gravity field of the Earth (IGFS2). Fairbanks, Alaska

  • Ågren J (2004) The analytical continuation bias in geoid determination using potential coefficients and terrestrial gravity data. J Geod 78:314–332

    Article  Google Scholar 

  • Bagherbandi M, Tenzer R (2013) Geoid-to-quasigeoid separation computed using the GRACE/GOCE global geopotential model GOCO02S—a case study of Himalayas, Tibet and central Siberia. Terr Atmos Ocean Sci 24(1):59–68

    Article  Google Scholar 

  • Bamber JL, Griggs JA, Hurkmans RTWL, Dowdeswell JA, Gogineni SP, Howat I, Mouginot J, Paden J, Palmer S, Rignot E, Steinhage D (2013) A new bed elevation dataset for Greenland. Cryosphere 7:499–510

    Article  Google Scholar 

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: \({\rm SRTM30}\_{\rm PLUS}\). Mar Geod 32(4):355–371

    Article  Google Scholar 

  • Bruns H (1878) Die Figur der Erde. Publ Preuss Geod Inst, Berlin

    Google Scholar 

  • Cutnell JD, Kenneth WJ (1995) Physics, 3rd edn. Wiley, New York

    Google Scholar 

  • Flury J, Rummel R (2009) On the geoid-quasigeoid separation in mountain areas. J Geod 83:829–847

    Article  Google Scholar 

  • Förste C, Bruinsma SL, Abrikosov O, Lemoine J-M, Schaller T, Götze H-J, Ebbing J, Marty J-C, Flechtner F, Balmino G, Biancale R (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse; presented at the 5th GOCE user workshop. Paris, pp 25–28

  • Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393

    Article  Google Scholar 

  • Heiskanen WH, Moritz H (1967) Physical geodesy. WH Freeman and Co, San Francisco

    Google Scholar 

  • Helmert FR (1884) Die mathematischen und physikalischen Theorien der höheren Geodäsie, vol 2. Teubner, Leipzig

    Google Scholar 

  • Helmert FR (1890) Die Schwerkraft im Hochgebirge, insbesondere in den Tyroler Alpen. Veröff Königl Preuss Geod Inst, No 1, Berlin

  • Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560

    Article  Google Scholar 

  • Hirt C (2012) Efficient and accurate high-degree spherical harmonic synthesis of gravity field functionals at the earth’s surface using the gradient approach. J Geod 86(9):729–744

    Article  Google Scholar 

  • Hirt C, Kuhn M (2012) Evaluation of high-degree series expansions of the topographic potential to higher-order powers. J Geophys Res 117:B12407

    Article  Google Scholar 

  • Hirt C, Rexer M (2015) Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models—available as gridded data and degree-10,800 spherical harmonics. Int J Appl Earth Obs Geoinf 39:103–112. doi:10.1016/j.jag.2015.03.001

  • Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy, 2nd edn. Springer, Berlin

    Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-SXI SRTM 90m database. http://srtm.csi.cgiar.org

  • Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0—a 1-degree global model of earth’s crust. Geophys Res Abst 15. Abstract EGU2013-2658

  • Ledersteger K (1968) Astronomische und Physikalische Geodäsie (Erdmessung). In: Jordan W, Eggert E, Kneissl M (eds) Handbuch der Vermessungskunde, vol V. Metzler, Stuttgart

    Google Scholar 

  • Mader K (1954) Die orthometrische Schwerekorrektion des Präzisions-Nivellements in den Hohen Tauern. Österreichische Zeitschrift für Vermessungswesen, Sonderheft 15

    Google Scholar 

  • Marti U (2005) Comparison of high precision geoid models in Switzerland. In: Tregonig P, Rizos C (eds) Dynamic planet. Springer, Berlin

    Google Scholar 

  • Martinec Z (1998) Boundary value problems for gravimetric determination of a precise geoid. Lecture notes in earth sciences, Vol 73. Springer, Berlin

  • Martinec Z, Vaníček P, Mainville A, Veronneau M (1995) The effect of lake water on geoidal height. Manuscr Geod 20:193–203

  • Molodensky MS (1945) Fundamental problems of geodetic gravimetry (in Russian). TRUDY Ts NIIGAIK, 42, Geodezizdat, Moscow

  • Molodensky MS (1948) External gravity field and the shape of the Earth surface. Izv CCCP, Moscow (in Russian)

    Google Scholar 

  • Molodensky MS, Yeremeev VF, Yurkina MI (1960) Methods for study of the external gravitational field and figure of the earth. TRUDY Ts NIIGAiK, Vol. 131, Geodezizdat, Moscow. English translation: Israel program for scientific translation, Jerusalem 1962

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–162

    Article  Google Scholar 

  • Niethammer T (1932) Nivellement und Schwere als Mittel zur Berechnung wahrer Meereshöhen. Schweizerische Geodätische Kommission

  • Niethammer T (1939) Das astronomische Nivellement im Meridian des St Gotthard, Part II, Die berechneten Geoiderhebungen und der Verlauf des Geoidschnittes. Astronomisch-Geodätische Arbeiten in der Schweiz, Vol 20, Swiss Geodetic Commission

  • Santos MC, Vaníček P, Featherstone WE, Kingdon R, Ellmann A, Martin B-A, Kuhn M, Tenzer R (2006) The relation between rigorous and Helmert’s definitions of orthometric heights. J Geod 80:691–704

  • Sjöberg LE (1995) On the quasigeoid to geoid separation. Manuscr Geod 20(3):182–192

    Google Scholar 

  • Sjöberg LE (2006) A refined conversion from normal height to orthometric height. Stud Geophys Geod 50:595–606

    Article  Google Scholar 

  • Sjöberg LE (2007) The topographical bias by analytical continuation in physical geodesy. J Geod 81:345–350

    Article  Google Scholar 

  • Sjöberg LE (2008) Answers to the comments by M Vermeer on LE Sjöberg (2007). The topographic bias by analytical continuation in physical geodesy. J Geod 81:345–350. J Geod 82(7):451–452

  • Sjöberg LE (2010) A strict formula for geoid-to-quasigeoid separation. J Geod 84:699–702

  • Sjöberg LE (2012) The geoid-to-quasigeoid difference using an arbitrary gravity reduction model. Stud Geophys Geod 56:929–933

    Article  Google Scholar 

  • Sjöberg LE, Bagherbandi M (2012) Quasigeoid-to-geoid determination by EGM08. Earth Sci Inform 5:87–91

    Article  Google Scholar 

  • Sünkel H, Bartelme N, Fuchs H, Hanafy M, Schuh WD, Wieser M (1987) The gravity field in Austria. In: Austrian geodetic commission (ed) The gravity field in Austria. Geodätische Arbeiten Österreichs für die Intenationale Erdmessung, Neue Folge, Vol IV, pp 47–75

  • Tenzer R, Vaníček P (2003) Correction to Helmert’s orthometric height due to actual lateral variation of topographical density. Braz J Cartogr Rev Brasil Cartogr 55(02):44–47

    Google Scholar 

  • Tenzer R (2004) Discussion of mean gravity along the plumbline. Stud Geoph Geod 48:309–330

    Article  Google Scholar 

  • Tenzer R, Vaníček P, Santos M, Featherstone WE, Kuhn M (2005) The rigorous determination of orthometric heights. J Geod 79(1–3):82–92

    Article  Google Scholar 

  • Tenzer R, Moore P, Novák P, Kuhn M, Vaníček P (2006) Explicit formula for the geoid-to-quasigeoid separation. Stud Geoph Geod 50:607–618

    Article  Google Scholar 

  • Tenzer R, Abdalla A, Vajda P, Hamayun, (2010) The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast. Contrib Geophys Geod 40(3):207–223

  • Tenzer R, Sirguey P, Rattenbury M, Nicolson J (2011) A digital bedrock density map of New Zealand. Comput Geosci 37(8):1181–1191

    Article  Google Scholar 

  • Tenzer R, Novák P, Vajda P, Gladkikh V, Hamayun (2012a) Spectral harmonic analysis and synthesis of earth’s crust gravity field. Comput Geosci 16(1):193–207

  • Tenzer R, Gladkikh V, Vajda P, Novák P (2012b) Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geophys 33(5):817–839

    Article  Google Scholar 

  • Tenzer R, Hirt Ch, Claessens S, Novák P (2015a) Spatial and spectral representations of the geoid-to-quasigeoid correction. Surv Geophys. doi:10.1007/s10712-015-9337-z

  • Tenzer R, Chen W, Tsoulis D, Bagherbandi M, Sjöberg LE, Novák P, Jin S (2015b) Analysis of the refined CRUST1.0 crustal model and its gravity field. Surv Geophys 36(1):139–165

    Article  Google Scholar 

  • Tziavos IN, Featherstone WE (2001) First results of using digital density data in gravimetric geoid computation in Australia. In: Sideris MG (ed) Gravity, geoid and geodynamics 2000. Springer, Berlin, pp 335–340

    Chapter  Google Scholar 

  • van den Broeke M (2008) Depth and density of the Antarctic firn layer. Arct Antarct Alp Res 40(2):432–438

    Article  Google Scholar 

  • Vaníček P, Kleusberg A, Martinec Z, Sun W, Ong P, Najafi M, Vajda P, Harrie L, Tomášek P, Horst B (1995) Compilation of a precise regional geoid. Final report on research done for the geodetic survey division, Fredericton

  • Vaníček P, Tenzer R, Sjöberg LE, Martinec Z, Featherstone WE (2005) New views of the spherical Bouguer gravity anomaly. Geophys J Int 159:460–472

    Article  Google Scholar 

  • Vermeer M (2008) Comment on Sjöberg (2006) The topographic bias by analytical continuation in physical geodesy. J Geod 81(5):345–350. J Geod 82:445–450

  • Wirth B (1990) Höhensysteme, Schwerepotentiale und Niveauflächen. Geodätisch-Geophysikalische Arbeiten in der Schweiz, Vol 42, Swiss Geodetic Commission

Download references

Acknowledgments

The Chinese Ministry of Education is cordially acknowledged for a financial support of Robert Tenzer by the start-up research project No. 214273812. Chris Hirt thanks Curtin University (Perth) and the Institute of Advanced Study (TU Munich) for their support. We also acknowledge the Czech Ministry of Education, Youth and Sport for a financial support by the National Program of Sustainability, Project No.: LO1506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Appendix: The potential coefficients \({ }_\mathrm{e}V_{{n,m}}^{{\delta \uprho }} \) and \({ }_\mathrm{i}V_{{n,m}}^{{\delta \uprho }} \)

Appendix: The potential coefficients \({ }_\mathrm{e}V_{{n,m}}^{{\delta \uprho }} \) and \({ }_\mathrm{i}V_{{n,m}}^{{\delta \uprho }} \)

The potential coefficients \({ }_\mathrm{e}V_{{n,m}}^{{\delta \uprho }} \) and \({ }_\mathrm{i}V_{{n,m}}^{{\delta \uprho }} \) of the volumetric mass density contrast layer (in Eq. 13) are given by (Tenzer et al. 2015a)

$$\begin{aligned}&{ }_\mathrm{e}{V}_{{n,m}}^{{\delta \uprho }} =\frac{3}{2n+1}\frac{1}{{\bar{\uprho }}^{\text {Earth}}}\sum \limits _{i=0}^I \, \left( {{ }_\mathrm{e}\mathrm{Fu}_{{n,m}}^{{(i)}} -{ }_\mathrm{e}\mathrm{Fl}_{{n,m}}^{{(i)}} }\right) ,\end{aligned}$$
(23)
$$\begin{aligned}&{ }_\mathrm{i}{V}_{{n,m}}^{{\delta \uprho }} =\frac{3}{2n+1}\frac{1}{{\bar{\uprho }}^{\text {Earth}}}\sum \limits _{i=0}^I \, \left( {{ }_\mathrm{i}\mathrm{Fu}_{{n,m}}^{{(i)}} -{ }_\mathrm{i}\mathrm{Fl}_{{n,m}}^{{(i)}} }\right) . \end{aligned}$$
(24)

The coefficients {\({ }_\mathrm{e}\mathrm{Fl}_{{n,m}}^{{(i)}} ,\;{ }_\mathrm{e}\mathrm{Fu}_{{n,m}}^{{(i)}} :\;i=0,\,1,\ldots ,I\)} in Eq. (23) read

$$\begin{aligned} { }_\mathrm{e}\mathrm{Fl}_{{n,m}}^{{(i)}} =\sum \limits _{k=0}^{n+2} {\left( {{\begin{array}{ll} {n+2} \\ k \\ \end{array} }}\right) } \frac{1}{k+1+i}\frac{{L}_{{n,m}}^{( {k+1+i})} }{R^{k+1}}, \end{aligned}$$
(25)
$$\begin{aligned} { }_\mathrm{e}\mathrm{Fu}_{{n,m}}^{{(i)}} =\sum \limits _{k=0}^{n+2} {\left( {{\begin{array}{ll} {n+2} \\ k \\ \end{array} }}\right) } \frac{1}{k+1+i}\frac{{U}_{{n,m}}^{( {k+1+i})} }{R^{k+1}}. \end{aligned}$$
(26)

Equivalently, the coefficients {\({ }_{i}\mathrm{Fl}_{{n,m}}^{{(i)}} ,\;{ }_{i}\mathrm{Fu}_{{n,m}}^{{(i)}} :\;i=0,\,1,\ldots ,I\)} in Eq. (24) are defined by

$$\begin{aligned} { }_{i}\mathrm{Fl}_{{n,m}}^{{(i)}} =\sum \limits _{k=0}^\infty {( {-1})^k\left( {{\begin{array}{ll} {n+k-2} \\ k \\ \end{array} }}\right) } \frac{1}{k+1+i}\frac{L_{{n,m}}^{( {k+1+i})} }{{R}^{k+1}},\nonumber \\ \end{aligned}$$
(27)
$$\begin{aligned} { }_{i}\mathrm{Fu}_{{n,m}}^{{(i)}} =\sum \limits _{k=0}^\infty {( {-1})^k\left( {{\begin{array}{ll} {n+k-2} \\ k \\ \end{array} }}\right) } \frac{1}{k+1+i}\frac{U_{{n,m}}^{( {k+1+i})} }{{R}^{k+1}}.\nonumber \\ \end{aligned}$$
(28)

The coefficients in Eqs. (2528) utilize the spherical lower-bound and upper-bound functions \(L_{n} \) and \(U_{n} \) of a volumetric mass density contrast layer and their higher-order terms (cf. Tenzer et al. 2012a, b)

$$\begin{aligned}&{L}_{n}^{( {k+1+i})} ( \Omega )\nonumber \\&\quad =\left\{ {{\begin{array}{ll} {\begin{array}{l} \frac{2n+1}{4\pi }\int \!\!\!\int \limits _\Phi {\delta \rho ( {{H}'_U ,{{\Omega }}'})\,H_L^{k+1} ( {{\Omega }'}){P}_{n} ( t)\;\mathrm{d}{\Omega }'} \\ =\sum \limits _{m=-n}^n {{L}_{{n,m}}^{( {k+1})} Y_{{n,m}} ( \Omega )\;} \quad \quad \quad \quad \quad \quad \quad \quad i=0\quad \;\quad \\ \end{array}} \\ {\begin{array}{l} \\ \\ \end{array}} \\ {\begin{array}{l} \frac{2n+1}{4\pi }\int \!\!\!\int \limits _\Phi {\beta ( {{\Omega }'})\;\alpha _i ( {{\Omega }'})\,H_L^{k+1+i} ( {{\Omega }'}){P}_{n} ( t)\;\mathrm{d}{\Omega }'} \\ =\sum \limits _{{m}=-n}^{n} {{L}_{{n,m}}^{( {k+1+i})} Y_{{n,m}} ( \Omega )\;} \quad \quad \quad \quad \quad \quad \quad i=1,\,2,\ldots ,I \\ \end{array}} \\ \end{array} }} \right. \nonumber \\ \end{aligned}$$
(29)

and

$$\begin{aligned}&{U}_{n}^{( {k+1+i})} ( \Omega )\nonumber \\&\quad =\left\{ {{\begin{array}{ll} {\begin{array}{l} \frac{2n+1}{4\pi }\int \!\!\!\int \limits _\Phi {\delta \rho ( {{H}'_U ,{\Omega }'})\,H_U^{k+1} ( {{\Omega }'}){P}_{n} ( t)\;\mathrm{d}{\Omega }'} \\ =\sum \limits _{m=-n}^n {{U}_{{n,m}}^{( {k+1})} Y_{{n,m}} ( \Omega )\;} \quad \quad \quad \quad \quad \quad \quad \quad i=0\quad \;\quad \\ \end{array}} \\ {\begin{array}{l} \\ \\ \end{array}} \\ {\begin{array}{l} \frac{2n+1}{4\pi }\int \!\!\!\int \limits _\Phi {\beta ( {{\Omega }'})\;\alpha _i ( {{\Omega }'})\,H_U^{k+1+i} ( {{\Omega }'}){P}_{n} (t)\;\mathrm{d}{\Omega }'} \\ =\sum \limits _{m=-n}^n {{U}_{{n,m}}^{( {k+1+i})} Y_{{n,m}} ( \Omega )\;} \quad \quad \quad \quad \quad \quad \quad i=1,\,2,\ldots ,I \\ \end{array}} \\ \end{array} }} \right. \nonumber \\ \end{aligned}$$
(30)

The density contrast distribution \(\delta \rho \) in Eqs. (29) and (30) is taken with respect to the reference topographic density \({\uprho } ^\mathrm{T}\). We then write

$$\begin{aligned} \delta \rho ( {r,\Omega })= & {} {\uprho } ^\mathrm{T}-\rho ( {r,\Omega }) \nonumber \\= & {} \delta \rho ( {H_U ,\Omega })+\beta ( \Omega )\;\sum \limits _{i=1}^I {\alpha _i ( \Omega )\;( {r-R})^i} \,,\nonumber \\&for\quad R+H_U ( \Omega )\ge r>R+H_L ( \Omega ), \end{aligned}$$
(31)

where \(\delta \rho ( {H_U ,\Omega })\) is the (nominal) value of the lateral density contrast at the upper bound \(H_U \) and location \(\Omega \). The radial density change with respect to \(\delta \rho ( {H_U ,\Omega })\) is described by the parameters \(\beta \) and {\(\alpha _i :\;\,i=1,\,2,\ldots , I\)}.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenzer, R., Hirt, C., Novák, P. et al. Contribution of mass density heterogeneities to the quasigeoid-to-geoid separation. J Geod 90, 65–80 (2016). https://doi.org/10.1007/s00190-015-0858-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0858-5

Keywords

Navigation