Skip to main content
Log in

Collinearity assessment of geocentre coordinates derived from multi-satellite SLR data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Of the three satellite geodetic techniques contributing to the International Terrestrial Reference Frame (ITRF), Satellite Laser Ranging (SLR) is generally held to provide the most reliable time series of geocentre coordinates and exclusively defines the ITRF origin. Traditionally, only observations to the two LAser GEOdynamics Satellite (LAGEOS) and Etalon pairs of satellites have been used for the definition of the ITRF origin. Previous simulation studies using evenly sampled LAGEOS-like data have shown that only the Z component of geocentre motion suffers minor collinearity issues, which may explain its lower quality compared to the equatorial components. Using collinearity diagnosis, this study provides insight into the actual capability of SLR to sense geocentre motion using the existing geographically unbalanced ground network and real observations to eight spherical geodetic satellites. We find that, under certain parameterisations, observations to the low Earth orbiters (LEOs) Starlette, Stella, Ajisai and LAser RElativity Satellite are able to improve the observability of the geocentre coordinates in multi-satellite solutions compared to LAGEOS-only solutions. The higher sensitivity of LEOs to geocentre motion and the larger number of observations are primarily responsible for the improved observability. Errors in the modelling of Starlette, Stella and Ajisai orbits may contaminate the geocentre motion estimates, but do not disprove the intrinsic strength of LEO tracking data. The sporadically observed Etalon satellites fail to make a significant beneficial contribution to the observability of the geocentre coordinates derived via the network shift approach and can be safely omitted from SLR data analyses for TRF determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://ilrs.gsfc.nasa.gov/docs/ILRS_contribution_to_ITRF2008.pdf.

  2. http://ilrs.gsfc.nasa.gov/docs/2014/Minutes_ILRS_AWG_19th_ILW_2014.10.26_Meeting.pdf.

  3. http://ilrs.dgfi.badw.de/fileadmin/data_handling/ILRS_Discontinuities_File.snx.

  4. http://ilrs.dgfi.badw.de/fileadmin/data_handling/ILRS_Data_Handling_File.snx.

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Angermann D, Müller H (2008) On the strength of SLR observations to realize the scale and origin of the terrestrial reference system. In: Sideris MG (ed) Observing our changing Earth, International Association of Geodesy Symposia, vol 133, Springer, pp 21–29. doi:10.1007/978-3-540-85426-5_3

  • Argus DF (2012) Uncertainty in the velocity between the mass center and surface of Earth. J Geophys Res 117(B10). doi:10.1029/2012JB009196

  • Barletta VR, Sørensen LS, Forsberg R (2013) Scatter of mass changes estimates at basin scale for Greenland and Antarctica. The Cryosphere 7(5):1411–1432. doi:10.5194/tc-7-1411-2013

    Article  Google Scholar 

  • Baur O, Kuhn M, Featherstone WE (2013) Continental mass change from GRACE over 2002–2011 and its impact on sea level. J Geod 87(2):117–125. doi:10.1007/s00190-012-0583-2

    Article  Google Scholar 

  • Blaha G (1982) Free networks: minimum norm solution as obtained by the inner adjustment constraint method. Bull Géod 56(3):209–219. doi:10.1007/BF02525582

    Article  Google Scholar 

  • Bouillé F, Cazenave A, Lemoine JM, Crétaux JF (2000) Geocenter motion from the DORIS space system and laser data to the Lageos satellites: comparison with surface loading data. Geophys J Int 143(1):71–82. doi:10.1046/j.1365-246x.2000.00196.x

    Article  Google Scholar 

  • Chambers DP (2006) Observing seasonal steric sea level variations with GRACE and satellite altimetry. J Geophys Res 111(C3). doi:10.1029/2005JC002914

  • Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31(13). doi:10.1029/2004GL020461

  • Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on gravity recovery and climate experiment (GRACE) water storage estimates. Geophys Res Lett 32(14). doi:10.1029/2005GL022964

  • Cheng M, Tapley BD (1999) Seasonal variations in low degree zonal harmonics of the Earth’s gravity field from satellite laser ranging observations. J Geophys Res 104(B2):2667–2681. doi:10.1029/1998JB900036

    Article  Google Scholar 

  • Cheng M, Shum CK, Tapley BD (1997) Determination of long-term changes in the Earth’s gravity field from satellite laser ranging observations. J Geophys Res 102(B10):22377–22390. doi:10.1029/97JB01740

    Article  Google Scholar 

  • Cheng M, Ries JC, Tapley BD (2013) Geocenter variations from analysis of SLR data. In: Altamimi Z, Collilieux X (eds) Reference frames for applications in geosciences, International Association of Geodesy Symposia, vol 138, Springer, pp 19–25. doi:10.1007/978-3-642-32998-2_4

  • Ciufolini I, Paolozzi A, Pavlis EC, Ries JC, Gurzadyan V, Koenig R, Matzner R, Penrose R, Sindoni G (2012) Testing general relativity and gravitational physics using the LARES satellite. Eur Phys J Plus 127(11):133. doi:10.1140/epjp/i2012-12133-8

    Article  Google Scholar 

  • Collilieux X, Wöppelmann G (2011) Global sea-level rise and its relation to the terrestrial reference frame. J Geod 85(1):9–22. doi:10.1007/s00190-010-0412-4

    Article  Google Scholar 

  • Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114(B4). doi:10.1029/2008JB005727

  • Cook GE (1965) Satellite drag coefficients. Planet Space Sci 13(10):929–946. doi:10.1016/0032-0633(65)90150-9

    Article  Google Scholar 

  • Crétaux JF, Soudarin L, Davidson FJM, Gennero MC, Bergé-Nguyen M, Cazenave A (2002) Seasonal and interannual geocenter motion from SLR and DORIS measurements: comparison with surface loading data. J Geophys Res 107(B12):ETG 16-1–ETG 16-9. doi:10.1029/2002JB001820

    Google Scholar 

  • Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107(C11):7-1–7-13. doi:10.1029/2001JC001224

    Google Scholar 

  • Dong D, Yunck T, Heflin M (2003) Origin of the international terrestrial reference frame. J Geophys Res 108(B4):ETG 8-1–ETG 8-10. doi:10.1029/2002JB002035

    Google Scholar 

  • Dong D, Qu W, Fang P, Peng D (2014) Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame. Geophys J Int 198(2):1071–1080. doi:10.1093/gji/ggu187

    Article  Google Scholar 

  • Feissel-Vernier M, Bail KL, Berio P, Coulot D, Ramillien G, Valette JJ (2006) Geocentre motion measured with DORIS and SLR, and predicted by geophysical models. J Geod 80(8–11):637–648. doi:10.1007/s00190-006-0079-z

    Article  Google Scholar 

  • Gobinddass ML, Willis P, Viron O, Sibthorpe A, Zelensky NP, Ries JC, Ferland R, Bar-Sever Y, Diament M (2009a) Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modeling. J Geod 83(9):849–858. doi:10.1007/s00190-009-0303-8

    Article  Google Scholar 

  • Gobinddass ML, Willis P, Viron O, Sibthorpe A, Zelensky NP, Ries JC, Ferland R, Bar-Sever Y, Diament M, Lemoine FG (2009) Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure models. Adv Space Res 44(11):1279–1287. doi:10.1016/j.asr.2009.08.004

    Article  Google Scholar 

  • Gross RS, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Plag HP, Pearlman M (eds) Global geodetic observing system. Springer, pp 209–224. doi:10.1007/978-3-642-02687-4_7

  • Kuang D, Bar-Sever Y, Haines B (2015) Analysis of orbital configurations for geocenter determination with GPS and low-Earth orbiters. J Geod 89(5):471–481. doi:10.1007/s00190-015-0792-6

    Article  Google Scholar 

  • Lavallée DA, van Dam T, Blewitt G, Clarke PJ (2006) Geocenter motions from GPS: a unified observation model. J Geophys Res 111(B5). doi:10.1029/2005JB003784

  • Lejba P, Schillak S (2011) Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites. Adv Space Res 47(4):654–662. doi:10.1016/j.asr.2010.10.013

    Article  Google Scholar 

  • Lucchesi DM, Ciufolini I, Andrés JI, Pavlis EC, Peron R, Noomen R, Currie DG (2004) LAGEOS II perigee rate and eccentricity vector excitations residuals and the Yarkovsky–Schach effect. Planet Space Sci 52(8):699–710. doi:10.1016/j.pss.2004.01.007

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • Maier A, Krauss S, Hausleitner W, Baur O (2012) Contribution of satellite laser ranging to combined gravity field models. Adv Space Res 49(3):556–565. doi:10.1016/j.asr.2011.10.026

    Article  Google Scholar 

  • Meindl M, Beutler G, Thaller D, Dach R, Jäggi A (2013) Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv Space Res 51(7):1047–1064. doi:10.1016/j.asr.2012.10.026

    Article  Google Scholar 

  • Melachroinos SA, Lemoine FG, Zelensky NP, Rowlands DD, Luthcke SB, Bordyugov O (2013) The effect of geocenter motion on Jason-2 orbits and the mean sea level. Adv Space Res 51(8):1323–1334. doi:10.1016/j.asr.2012.06.004

    Article  Google Scholar 

  • Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31(14). doi:10.1029/2004GL020308

  • Mendes VB, Prates G, Pavlis EC, Pavlis DE, Langley RB (2002) Improved mapping functions for atmospheric refraction correction in SLR. Geophys Res Lett 29(10):53-1–53-4. doi:10.1029/2001GL014394

    Article  Google Scholar 

  • Milani A, Nobili AM, Farinella P (1987) Non-gravitational perturbations and satellite geodesy. Adam Hilger, Bristol

    Google Scholar 

  • Montenbruck O, Gill E (2000) Satellite orbits: models, methods and applications, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Montgomery DC, Peck EA, Vining GG (2012) Introduction to linear regression analysis, 5th edn. Wiley, Hoboken

    Google Scholar 

  • Moore P, Wang J (2003) Geocentre variation from laser tracking of LAGEOS1/2 and loading data. Adv Space Res 31(8):1927–1933. doi:10.1016/S0273-1177(03)00170-4

    Article  Google Scholar 

  • Moore P, Boomkamp HJ, Carnochan S, Walmsley RJ (1999) Faust: multi-satellite orbital dynamics software. Adv Space Res 23(4):785–795. doi:10.1016/S0273-1177(99)00144-1

    Article  Google Scholar 

  • Moore P, Zhang Q, Alothman A (2005) Annual and semiannual variations of the Earth’s gravitational field from satellite laser ranging and CHAMP. J Geophys Res 110(B6). doi:10.1029/2004JB003448

  • Noll CE (2010) The crustal dynamics data information system: a resource to support scientific analysis using space geodesy. Adv Space Res 45(12):1421–1440. doi:10.1016/j.asr.2010.01.018

    Article  Google Scholar 

  • Otsubo T, Appleby GM (2003) System-dependent center-of-mass correction for spherical geodetic satellites. J Geophys Res 108(B4). doi:10.1029/2002JB002209

  • Otsubo T, Sherwood RA, Appleby GM, Neubert R (2015) Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES. J Geod 89(4):303–312. doi:10.1007/s00190-014-0776-y

    Article  Google Scholar 

  • Paolozzi A, Ciufolini I (2013) LARES successfully launched in orbit: satellite and mission description. Acta Astronaut 91:313–321. doi:10.1016/j.actaastro.2013.05.011

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117(B4). doi:10.1029/2011JB008916

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS Conventions (2010). IERS Technical Note No. 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

  • Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(A12):SIA 15-1–SIA 15-16. doi:10.1029/2002JA009430

    Google Scholar 

  • Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression analysis: a research tool, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Ray RD, Ponte RM (2003) Barometric tides from ECMWF operational analyses. Ann Geophys 21(8):1897–1910. doi:10.5194/angeo-21-1897-2003

    Article  Google Scholar 

  • Rebischung P, Altamimi Z, Springer T (2014) A collinearity diagnosis of the GNSS geocenter determination. J Geod 88(1):65–85. doi:10.1007/s00190-013-0669-5

    Article  Google Scholar 

  • Ries JC (2008) SLR center of mass offset for Starlette and Stella. GGOS Working Group on Ground Networks Communications Meeting, Vienna. ftp://cddis.gsfc.nasa.gov/misc/ggos/0804/GNCWG_Ries_slrbias_080416.pdf

  • Rubincam DP (1988) Yarkovsky thermal drag on LAGEOS. J Geophys Res 93(B11):13805–13810. doi:10.1029/JB093iB11p13805

    Article  Google Scholar 

  • Rubincam DP (1990) Drag on the LAGEOS satellite. J Geophys Res 95(B4):4881–4886. doi:10.1029/JB095iB04p04881

    Article  Google Scholar 

  • Sośnica K (2014) Determination of precise satellite orbits and geodetic parameters using satellite laser ranging. PhD Dissertation, Astronomical Institute, University of Bern, Switzerland

  • Sośnica K, Jäggi A, Thaller D, Beutler G, Dach R (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geod 88(8):789–804. doi:10.1007/s00190-014-0722-z

    Article  Google Scholar 

  • Standish EM, Newhall XX, Williams JG, Folkner WF (1995) JPL planetary and lunar ephemerides, DE403/LE403. Interoffice Memorandum 314.10-127, Jet Propulsion Laboratory, Pasadena, California

  • Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans Am Geophys Union 94(45):409–410. doi:10.1002/2013EO450001

    Article  Google Scholar 

  • Wu X, Argus DF, Heflin MB, Ivins ER, Webb FH (2002) Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data. Geophys Res Lett 29(24):63-1–63-4. doi:10.1029/2002GL016324

  • Wu X, Heflin MB, Ivins ER, Argus DF, Webb FH (2003) Large-scale global surface mass variations inferred from GPS measurements of load-induced deformation. Geophys Res Lett 30(14):SDE 5-1–SDE 5-4. doi:10.1029/2003GL017546

    Google Scholar 

  • Wu X, Collilieux X, Altamimi Z, Vermeersen BLA, Gross RS, Fukumori I (2011) Accuracy of the international terrestrial reference frame origin and Earth expansion. Geophys Res Lett 38(13). doi:10.1029/2011GL047450

  • Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61. doi:10.1016/j.jog.2012.01.007

    Article  Google Scholar 

  • Zelensky NP, Lemoine FG, Chinn DS, Melachroinos S, Beckley BD, Beall JW, Bordyugov O (2014) Estimated SLR station position and network frame sensitivity to time-varying gravity. J Geod 88(6):517–537. doi:10.1007/s00190-014-0701-4

    Article  Google Scholar 

Download references

Acknowledgments

We thank the ILRS (Pearlman et al. 2002) for the continuous provision of SLR data through its two data centres and four anonymous reviewers for their constructive comments that improved the contents of this article. The Generic Mapping Tools software package (Wessel et al. 2013) was used to produce Figs. 1 and 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian B. Spatar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spatar, C.B., Moore, P. & Clarke, P.J. Collinearity assessment of geocentre coordinates derived from multi-satellite SLR data. J Geod 89, 1197–1216 (2015). https://doi.org/10.1007/s00190-015-0845-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0845-x

Keywords

Navigation