Skip to main content
Log in

On kalman filter for linear system with colored measurement noise

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The Kalman filter for linear systems with colored measurement noises is revisited. Besides two well-known approaches, i.e., Bryson’s and Petovello’s, another measurement time difference-based approach is introduced. This approach is easy to be implemented and generalized to nonlinear system, and can provide filtering solutions directly. A unified view on these approaches is provided, and the equivalence between any two of the three is proved. In the case study part it is validated that, compared to the approach that neglects the time correlations, the approaches that take them into account not only avoid overly optimistically evaluating the estimate, but also improve the transient accuracy of the estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bryson A, Henrikson L (1968) Estimation using sampled data containing sequentially correlated noise. J Spacecr Rockets 5:662–665

    Article  Google Scholar 

  • Bryson A, Johansen D (1965) Linear filtering for time-varying systems using measurements containing colored noise. IEEE Trans Autom Control 10:4–10

    Article  Google Scholar 

  • Chang G (2014a) Comment on “A Gaussian approximation recursive filter for nonlinear systems with correlated noises”. Automatica 50:655–656

    Article  Google Scholar 

  • Chang G (2014b) Marginal unscented Kalman filter for cross-correlated process and observation noise at the same epoch. IET Radar Sonar Navig 8:54–64

    Article  Google Scholar 

  • Chang S-Y, Mills G, Latif S (2012) Application of Kalman filter with time-correlated measurement errors in subsurface contaminant transport modeling. J Environ Eng 138:771–779

    Article  Google Scholar 

  • Ding W, Wang J (2011) Precise velocity estimation with a stand-alone GPS receiver. J Navig 64:311–325

    Article  Google Scholar 

  • El-Rabbany A, Kleusberg A (2003) Effect of temporal physical correlation on accuracy estimation in GPS relative positioning. J Surv Eng 129:28–32

    Article  Google Scholar 

  • Han S, Wang J (2012) Integrated GPS/INS navigation system with dual-rate Kalman Filter. GPS Solut 16:389–404

    Article  Google Scholar 

  • Howind J, Kutterer H, Heck B (1999) Impact of temporal correlations on GPS-derived relative point positions. J Geodesy 73:246–258

    Article  Google Scholar 

  • Kim D-M, Suk J (2012) GPS output signal processing considering both correlated/white measurement noise for optimal navigation filtering. Int J Aeronaut Space Sci 13:499–506

    Google Scholar 

  • Lambert HC (2012) Cramer-Rao bounds for target tracking problems involving colored measurement noise. IEEE Trans Aerosp Electron Syst 48:620–636

    Article  Google Scholar 

  • Luo X (2013) GPS stochastic modelling: signal quality measures and ARMA processes. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Miller C, O’Keefe K, Gao Y (2012) Time correlation in GNSS positioning over short baselines. J Surv Eng 138:17–24

    Article  Google Scholar 

  • Niu X, Chen Q, Zhang Q, Zhang H, Niu J, Chen K, Shi C, Liu J (2014) Using Allan variance to analyze the error characteristics of GNSS positioning. GPS Solut 18:231–242

    Article  Google Scholar 

  • Odolinski R (2012) Temporal correlation for network RTK positioning. GPS Solut 16:147–155

    Article  Google Scholar 

  • Petovello MG, O’Keefe K, Lachapelle G, Cannon ME (2009) Consideration of time-correlated errors in a Kalman filter applicable to GNSS. J Geodesy 83:51–56

    Article  Google Scholar 

  • Petovello MG, O’Keefe K, Lachapelle G, Cannon ME (2011) Erratum to: consideration of time-correlated errors in a Kalman filter applicable to GNSS. J Geodesy 85:367–368

    Article  Google Scholar 

  • van Graas F, Soloviev A (2004) Precise velocity estimation using a stand-alone GPS receiver. Navigation 51:283–292

    Article  Google Scholar 

  • Wang J, Satirapod C, Rizos C (2002) Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. J Geodesy 76:95–104

  • Wang K, Li Y, Rizos C (2012) Practical approaches to Kalman filtering with time-correlated measurement errors. IEEE Trans Aerosp Electron Syst 48:1669–1681

    Article  Google Scholar 

  • Wang X, Liang Y, Pan Q, Zhao C, Li H (2012) Unscented Kalman filter for nonlinear systems with colored measurement noise. Acta Automatica Sinica 38:986–998

    Google Scholar 

  • Wu W-R, Chang D-C (1996) Maneuvering target tracking with colored noise. IEEE Trans Aerosp Electron Syst 32:1311–1320

    Article  Google Scholar 

Download references

Acknowledgments

The author’s sincere thanks go to the associate editor and three anonymous reviewers for their thorough and critical comments which improved the ealier draft significantly; and also to Dr. Jiaxun Li of Tianjin Institute of Hydrographic Surveying and Charting, and Dr. Lubin Chang of the Department of Navigation Engineering, Naval University of Engineering, for checking the English. This work was supported in part by National Natural Science Foundation of China (No. 41374018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobin Chang.

Appendix: proof of (48)

Appendix: proof of (48)

Substitute (27), (43), and (45) into (42) we have

$$\begin{aligned} \varvec{P}_{(3)}&= \varvec{\varPhi } \varvec{P}{\varvec{\varPhi }}^{T}+\varvec{Q}-\varvec{F}\varvec{K}_{(1)} \varvec{\varSigma }_{(1)} \varvec{K}_{(1)}^T \varvec{F}^{T}\nonumber \\&-\varvec{F}\varvec{K}_{(1)} {\varvec{\varSigma }}_{(1)} \varvec{J}^{T}-\varvec{J}{\varvec{\varSigma }}_{(1)} \varvec{K}_{(1)}^T \varvec{F}^{T}-\varvec{J}{\varvec{\varSigma }}_{(1)} \varvec{J}^{T}\nonumber \\ \end{aligned}$$
(60)

Substitute (10) into \(F\varvec{K}_{(1)} {\varvec{\varSigma }}_{(1)} \varvec{J}^{T}\) and \(\varvec{J}{\varvec{\varSigma }}_{(1)} {\varvec{K}}_{(1)}^T {\varvec{F}}^{T}\), (8) into \(J\varvec{\varSigma }_{(1)} \varvec{J}^{T}\), with (18) in mind, (60) can be rearranged as

$$\begin{aligned} \varvec{P}_{(3)}&= \varvec{\varPhi } \varvec{P}{\varvec{\varPhi }}^{T}+\varvec{Q}-\varvec{F}\varvec{K}_{(1)} {\varvec{\varSigma }}_{(1)} {\varvec{K}}_{(1)}^T \varvec{F}^{T}-\varvec{FPG}^{T}\varvec{J}^{T}\nonumber \\&-\varvec{JGPF}^{T}-\varvec{JGPG}^{T}\varvec{J}^{T} -\varvec{J}{\overline{\varvec{R}}}\varvec{J}^{T}\nonumber \\&= \varvec{\varPhi } \varvec{P}{\varvec{\varPhi }}^{T}+{\overline{\varvec{Q}}}-\varvec{F}\varvec{K}_{(1)} {\varvec{\varSigma }}_{(1)} \varvec{K}_{(1)}^T \varvec{F}^{T}-\varvec{FPG}^{T}\varvec{J}^{T}\nonumber \\&-\varvec{JGPF}^{T}-\varvec{JGPG}^{T}\varvec{J}^{T} \end{aligned}$$
(61)

With (15) in mind we notice that

$$\begin{aligned} \varvec{FPG}^{T}\varvec{J}^{T}+\varvec{JGPG}^{T}\varvec{J}^{T}= {\varvec{\varPhi }} \varvec{PG}^{T}\varvec{J}^{T} \end{aligned}$$
(62)

and its transpose

$$\begin{aligned} \varvec{JGPF}^{T}+\varvec{JGPG}^{T}\varvec{J}^{T}=\varvec{JGP}{\varvec{\varPhi }}^{T} \end{aligned}$$
(63)

So with (15) in mind, we have

$$\begin{aligned}&{\varvec{\varPhi }}\varvec{P}{\varvec{\varPhi }}^{T} -\varvec{FPG}^{T}\varvec{J}^{T}-\varvec{JGPF}^{T} -\varvec{JGPG}^{T}\varvec{J}^{T}\nonumber \\&\quad =\varvec{\varPhi }\varvec{P}{\varvec{\varPhi }}^{T}-\left( \varvec{FPG}^{T}\varvec{J}^{T} +\varvec{JGPG}^{T}\varvec{J}^{T}\right) \nonumber \\&\qquad - \left( \varvec{JGPF}^{T}+\varvec{JGPG}^{T}\varvec{J}^{T}\right) + \varvec{JGPG}^{T}\varvec{J}^{T}\nonumber \\&\quad =\varvec{\varPhi }\varvec{P}{\varvec{\varPhi }}^{T}-\varvec{\varPhi } \varvec{PG}^{T}\varvec{J}^{T}-\varvec{JGP}{\varvec{\varPhi }}^{T}+\varvec{JGPG}^{T}\varvec{J}^{T} \nonumber \\&\quad =(\varvec{\varPhi }-\varvec{JG})\varvec{P}({\varvec{\varPhi } -\varvec{JG}})^{T}=\varvec{FPF}^{T} \end{aligned}$$
(64)

Substitute (64) into (61), we have

$$\begin{aligned} \varvec{P}_{(3)} =\varvec{FPF}^{T}+{\overline{\varvec{Q}}}-\varvec{F}\varvec{K}_{(1)} {\varvec{\varSigma }}_{(1)}\varvec{K}_{(1)}^T \varvec{F}^{T}={\varvec{P}}_{(1)} \end{aligned}$$
(65)

So the equivalence between (20) and (42) are proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, G. On kalman filter for linear system with colored measurement noise. J Geod 88, 1163–1170 (2014). https://doi.org/10.1007/s00190-014-0751-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0751-7

Keywords

Navigation