Skip to main content

Advertisement

Log in

Assessment of observing time-variable gravity from GOCE GPS and accelerometer observations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

An assessment has been made of the possibility to estimate time-variable gravity from GPS-derived orbit perturbations and common-mode accelerometer observations of ESA’s GOCE Earth Explorer. A number of 20-day time series of Earth’s global long-wavelength gravity field have been derived for the period November 2009 to November 2012 using different parameter setups and estimation techniques. These techniques include a conventional approach where for each period, one set of gravity coefficients is estimated, either excluding or including empirical accelerations, and the so-called Wiese approach where higher frequency coefficients are estimated for the very long wavelengths. A principal component analysis of especially the time series of gravity field coefficients obtained by the Wiese approach and the conventional approach with empirical accelerations reveals an annual signal. When fitting this annual signal directly through the time series, the sine component (maximum in spring) displays features that are similar to well-known continental hydrological mass changes for the low latitude areas, such as mass variations in the Amazon basin, Africa and Australia for spatial scales down to 1,500 km. The cosine component (maximum in winter), however, displays large signals that can not be attributed to actual mass variations in the Earth system. The estimated gravity field changes from GOCE orbit perturbations are likely affected by missing GPS observations in case of high ionospheric perturbations during periods of increased solar activity, which is minimal in Summer and maximal towards the end of autumn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Baur O (2013) Greenland mass variation from time-variable gravity in the absence of GRACE. Geophys Res Lett 40:4289–4293. doi:10.1002/grl.50881

    Article  Google Scholar 

  • Beutler G, Jäggi A, Mervart L, Meyer U (2010) The celestial mechanics approach: theoretical foundations. J Geod 84:605–624. doi:10.1007/s00190-010-0401-7

    Article  Google Scholar 

  • Bock H, Jäggi A, Meyer U, Visser P, van den IJssel J, Van Helleputte T, Heinze M, Hugentobler U (2011) GPS derived orbits for the GOCE satellite. J Geod 85:807–818. doi:10.1007/s00190-011-0484-9

  • Bouman J, Fiorot S, Fuchs M, Gruber T, Schrama E, Tscherning C, Veicherts M, Visser P (2011) GOCE Gravitational gradients along the orbit. J Geod 85:791–805. doi:10.1007/s00190-011-0464-0

    Article  Google Scholar 

  • Broerse T, Visser P, Bouman J, Fuchs M, Vermeersen B, Schmidt M (2011) Modelling and observing the 8.8 Chile and 9.0 Japan earthquakes using GOCE. In: Proceedings of the 4th international GOCE user workshop, 31 March–1 April 2011, Technische Universität München (TM), Munich, Germany (ESA SP-696), ESA Communications, ESTEC, Noordwijk, The Netherlands, pp 1–9. ISBN 978-92-9092-260-5. ISSN 1609-042X

  • Drinkwater M, Haagmans R, Muzzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core explorer. In: 3rd GOCE user workshop, 6–8 November 2006, Frascati, Italy, ESA SP-627

  • ESA (2004) Swarm–the Earth’s magnetic field and environment explorers. Reports for mission selection, the six candidate Earth Explorer Missions, SP-1279(6), European Space Agency

  • Flechtner F (2007) AOD1B product description document or product releases 01 to 04. GRACE 327-750 (GR-GFZ-AOD-0001), gravity recovery and climate experiment, Rev 3.0, GeoforschungsZentrum Potsdam

  • Flechtner F, Dahle C, Gruber C, Sasgen I, König R, Michalak G, Neumayer KH (2013) Status GFZ RL05 and RL05a GRACE L2 products. In: GRACE Science Team meeting, Austin, TX, 23–25 October 2013. http://www.csr.utexas.edu/grace/GSTM/2013/proceedings.html. Last Accessed 20 Feb 2014

  • Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Piñeiro J, da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geod 85:749–758. doi:10.1007/s00190-011-0498-3

    Article  Google Scholar 

  • Fuchs M, Bouman J, Broerse T, Visser P, Vermeersen B (2013) Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry. J Geophys Res 118(10):5712–5721. doi:10.1002/jgrb.50381

    Article  Google Scholar 

  • GOCO (2013) Gravity observation combination (GOCO). http://www.goco.eu. Last Accessed 23 Jan 2013

  • Gruber T, Abrikosov O, Hugentobler U (2010) GOCE standards. Doc No: GO-TN-HPF-GS-0111, Issue 3 Rev 2

  • Gunter B, Encarnacao J, Ditmar P, Klees R, van Barneveld P, Visser P (2012) Deriving global time-variable gravity from precise orbits of the iridium next constellation. In: Advances in the astronautical sciences, vol 142, AAS 11-540. ISSN 0065-3438, pp 2087–2097

  • Jäggi A, Beutler G, Meyer U, Prange L, Dach R, Mervart L (2012a) AIUB-GRACE02S: status of GRACE gravity field recovery using the celestial mechanics approach. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for plane earth. International association of geodesy symposia. Springer, Berlin, vol 136, pp 161–169. doi:10.1007/978-3-642-20338-1_20

  • Jäggi A, Prange L, Hugentobler U (2012b) Impact of covariance information of kinematic positions on orbit reconstruction and gravity field recovery. Adv Space Res 47:1472–1479. doi:10.1016/j.asr.2010.12.009

    Article  Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy. Blaisdell Publishing Co, Waltham

    Google Scholar 

  • Meyer U, Jäggi A, Beutler G, Bock H (2013) The role of a priori information in gravity field determination. EGU General Assembly, Vienna, Austria, 7–12 April 2013, Abstract EGU2013-9008

  • Pail R, Fecher T, Jäggi A, Goiginger H (2011) Can GOCE help to improve temporal gravity field estimates? In: Proceedings of the 4th international GOCE user workshop, 31 March–1 April 2011, Technische Universität München (TM), Munich, Germany (ESA SP-696), ESA Communications, ESTEC, Noordwijk, The Netherlands, pp 1–6. ISBN 978-92-9092-260-5. ISSN 1609-042X

  • Pavlis D, Poulouse S, McCarthy J (2006) GEODYN operations manual. Contractor report, SGT Inc., Greenbelt

  • Ray R (1999) A global ocean tide model from Topex/Poseidon altimetry: GOT99.2. Technical report NASA Technical Memorandum 209478, Goddard Space Flight Center

  • Ray R, Egbert G, Erofeeva S (2011) Tide predictions in shelf and coastal waters: status and prospects. In: Vignudelli S et al. (ed) Coastal altimetry, vol 191. Springer, Berlin, pp 191–216. doi:10.1007/978-3-642-12796-0_8

  • Reigber C, Jochmann H, Wünsch J et al. (2005) Earth gravity field and seasonal variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP, results from three years in orbit, pp 25–30

  • Rodell M, Houser P, Gottschalck UJ, Mitchell K, Meng C, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin J, Walker J, Lomann D, Toll D (2004) The global land data assimilation system. Bull Am Meteor Soc 85:381–394

    Article  Google Scholar 

  • Rosborough GW (1987) Radial, transverse, and normal satellite position perturbations due to the geopotential. Celest Mech 40:409–421

    Article  Google Scholar 

  • Rowlands D, Marshall J, McCarthy J, Moore D, Pavlis D, Rowton S, Luthcke S, Tsaoussi L (1995) GEODYN II system description, vol 1–5. Contractor report, Hughes STX Corporation, Greenbelt

  • Sheard B, Heinzel G, Danzmann K, Shaddock D, Klipstein W, Folkner WM (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod 86:1083–1095. doi:10.1007/s00190-012-0566-3

    Article  Google Scholar 

  • Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res 107(B9). doi:10.1029/2001JB000576

  • Tapley B, Bettadpur S, Ries J, Thompson P, Watkins M (2004) GRACE measurements of mass variability in the Earth system. Science 305:1503–1505

    Article  Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02—an improved Earth gravity field model from GRACE. J Geod 79(8):467–478. doi:10.1007/s00190-005-0480-z

    Article  Google Scholar 

  • Weigelt M, van Dam T, Jäggi A, Prange L, Tourian M, Keller W, Sneeuw N (2013) Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking. J Geophys Res 118(7):3485–3859. doi:10.1002/jgrb.50283

  • Wiese D, Visser P, Nerem R (2011) Estimating low resolution/high frequency gravity fields to reduce temporal aliasing errors. Adv Space Res 48(6):1094–1107. doi:10.1016/j.asr.2011.05.027

    Article  Google Scholar 

Download references

Acknowledgments

ESA is acknowledged for supporting this study through the Support To Science Element (STSE) program and for providing the GOCE observations. D. Rowlands, F. Lemoine and S. Goossens from NASA/GSFC kindly provided the GEOYDN software and the GOT4.7 ocean tides model. The CHAMP time-variable solutions were provided by Matthias Weigelt through the International Center for Global Gravity Field Models (ICGEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. A. M. Visser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visser, P.N.A.M., van der Wal, W., Schrama, E.J.O. et al. Assessment of observing time-variable gravity from GOCE GPS and accelerometer observations. J Geod 88, 1029–1046 (2014). https://doi.org/10.1007/s00190-014-0741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0741-9

Keywords

Navigation