Skip to main content
Log in

The celestial mechanics approach: theoretical foundations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Gravity field determination using the measurements of Global Positioning receivers onboard low Earth orbiters and inter-satellite measurements in a constellation of satellites is a generalized orbit determination problem involving all satellites of the constellation. The celestial mechanics approach (CMA) is comprehensive in the sense that it encompasses many different methods currently in use, in particular so-called short-arc methods, reduced-dynamic methods, and pure dynamic methods. The method is very flexible because the actual solution type may be selected just prior to the combination of the satellite-, arc- and technique-specific normal equation systems. It is thus possible to generate ensembles of substantially different solutions—essentially at the cost of generating one particular solution. The article outlines the general aspects of orbit and gravity field determination. Then the focus is put on the particularities of the CMA, in particular on the way to use accelerometer data and the statistical information associated with it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112: B09401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19: 367–386

    Google Scholar 

  • Beutler G (2005) Methods of celestial mechanics. Springer, Berlin

    Google Scholar 

  • Beutler G, Jäggi A, Hugentobler U, Mervart L (2006) Efficient satellite orbit modelling using pseudo-stochastic parameters. J Geod 80(7): 353–372. doi:10.1007/s00190-006-0072-6

    Article  Google Scholar 

  • Beutler G, Jäggi A, Meyer U, Mervart L (2010) The celestial mechanics approach: application to data of the GRACE mission. J Geod. doi:10.1007/s00190-010-0402-6

  • Biancale R, Balmino G, Lemoine J-M, Marty J-C, Moynot B, Barlier F, Exertier P, Laurain O, Gegout P, Schwintzer P, Reigber C, Bode A, König R, Massmann F-H, Raimondo J-C, Schmidt R, Zhu SY (2000) A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5-S1. Geophys Res Lett 27(22): 3611–3614. doi:10.1029/2000GL011721

    Article  Google Scholar 

  • Dach R, Hugentobler U, Meindl M, Fridez P (eds) (2007) The Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern

  • Drinkwater M, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2006) The GOCE gravity mission: ESA’s first core explorer. ESA SP-627, ESA Publication Division, pp 1–7

  • Flechtner F (2005) AOD1B product description document. Technical Report GRACE 327-750, JPL. http://podaac.jpl.nasa.gov/pub/grace/doc/newsletters/GRACE_SDS_NL_0401.pdf

  • Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Meumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungszentrum Potsdam/Groupe de Recherche de Géodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82(6): 331–346. doi:10.1007/s00190-007-0183-8

    Article  Google Scholar 

  • Jäggi A, Beutler G, Hugentobler U (2006) Pseudo-stochastic orbit modeling techniques for low-Earth orbiters. J Geod 80(1): 47–60. doi:10.1007/s00190-006-0029-9

    Article  Google Scholar 

  • Jäggi A (2007) Pseudo-stochastic orbit modeling of low Earth satellites using the Global Positioning System. Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 73, Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule zürich, zürich

  • Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009a) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geod 83(12): 1145–1162. doi:10.1007/s00190-009-0333-2

    Article  Google Scholar 

  • Jäggi A, Beutler G, Prange L, Meyer U, Mervart L, Dach R, Rummel R, Gruber T (2009b) Gravity field determination at AIUB: current activities. EGU General Assembly 2009, EGU2009-8714

  • Jäggi A, Beutler G, Mervart L (2010a) GRACE gravity field determination using the celestial mechanics approach—first results. In: Mertikas S (ed) Gravity, geoid and Earth observation. Springer, Berlin, pp 177–184. doi:10.1007/978-3-642-10634-7-24

  • Jäggi A, Beutler G, Meyer U, Mervart L, Prange L, Dach R (2010b) AIUB-GRACE02S—status of GRACE gravity field recovery using the celestial mechanics approach. In: International association of geodesy symposium (accepted)

  • Kim J (2000) Simulation study of a low-low satellite-to-satellite tracking mission. PhD Dissertation, The University of Texas at Austin

  • Lemoine FG, Smith DE, Kunz L, Smith R, Pavlis NK, Klosko SM, Chinn DS, Torrence MH, Willamson RG, Cox CM, Rachlin KE, Wang YM, Kenyon SC, Salman R, Trimmer R, Rapp RH, Nerem RS (1997) The development of the NASA GSFC and NIMA joint geopotential model. In: Segawa J, Fujimoto H, Okubo S (eds) IAG symposia: gravity, geoid and marine geodesy. Springer, Berlin, pp 461–469

    Google Scholar 

  • Liu X (2008) Global gravity field recovery from satallite-to-satellite tracking data with the acceleration approach. Publications on Geodesy, Nederlandse Commissie voor Geodesie, Netherlands Geodetic Commission, No 68

  • Liu X, Ditmar P, Siemes C, Slobbe DC, Revtova E, Klees R, Riva R, Zhao Q (2010) DEOS mass transport model (DMT-1) based on GRACE satellite data: methodology and validation. Geophys J Int. doi:10.1111/j.1365-246X.2010.04533.x

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: insight from FES2004. Ocean Dyn 56: 394–415

    Article  Google Scholar 

  • Mayer-Gürr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: a CHAMP gravity field model from short kinematical arcs of a one-year observation period. J Geod 78: 462–480

    Article  Google Scholar 

  • Mayer-Gürr T (2008) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation Schriftenreihe Institut für Geodäsie und Geoinformation No 9, University of Bonn

  • McCarthy DD, Petit G (eds) (2003) IERS conventions (2003), international Earth rotation and reference systems service (IERS). IERS Technical Note No. 32, Verlag des Bundesamtes für Karthographie und Geodäsie, Frankfurt am Main, 2004

  • Montenbruck O, Garcia-Fernandez M, Williams J (2006) Performance comparison of semi-codeless GPS receivers for LEO satellites. GPS Solut 10(4): 249–261. doi:10.1007/s10291-006-0025-9

    Article  Google Scholar 

  • Pail R, Metzler B, Lackner B, Preimesberger T, Höck E, Schuh W-D, Alkathib H, Boxhammer C, Siemes C, Wermuth M (2006) GOCE gravity field analysis in the framework of HPF: operational softwaresystem and simulation results. In: 3rd GOCE User workshop, Frascati, Italy, ESA SP-627, pp 249–256, 6–8 November 2006

  • Prange L, Jäggi A, Beutler G, Mervart L, Dach R (2009) Gravity field determination at the AIUB—the celestial mechanics approach. In: Sideris MG (ed) observing our changing Earth. Springer, Berlin, pp 353–362. doi:10.1007/978-3-540-85426-5-42

  • Prange L, Jäggi A, Bock H, Dach R (2010) The AIUB-CHAMP02S and the influence of GNSS model changes on gravity field recovery using spaceborne GPS. Adv Space Res 45(2): 215–224. doi:10.1016/j.asr.2009.09.020

    Article  Google Scholar 

  • Reigber C, Jochmann H, Wünsch J, Petrovic S, Schwintzer F, Barthelmes F, Neumayer K H, König R, Förste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Pérosanz F (2004) Earth gravity field and seasonal variability from CHAMP. In: Reigber C, Schwintzer P, Wickert J (eds) Earth observation from CHAMP—results from three years in orbit. Springer, Berlin, pp 25–30

    Google Scholar 

  • Seidelmann, PK (eds) (1992) Explanatory supplement to the astronomical almanac. University Science Books, Mill Valley

    Google Scholar 

  • Strang G, Borre K (1997) Linear algebra, geodesy, and GPS. Wellesley-Cambridge Press, Wellesley

    Google Scholar 

  • Švehla D, Rothacher M (2004) Kinematic precise orbit determination for gravity field determination. In: Sansò F (eds) A window on the future of geodesy. Springer, Berlin, pp 181–188. doi:10.1007/3-540-27432-4-32

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683): 503–505

    Article  Google Scholar 

  • Tapley BD, Ries J, Bettapour S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02—an improved Earth gravity model from GRACE. J Geod 79: 467–478

    Article  Google Scholar 

  • Thomas JB (1999) An analysis of gravity-field estimation based on intersatellite dual-1-way biased ranging JPL Publication 98-15. http://podaac.jpl.nasa.gov/pub/grace/doc/newsletters/GRACE_SDS_NL_0401.pdf

  • Touboul P, Willemenot E, Foulon B, Josselin V (1999) Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution. Boll Geofis Teor Appl 40: 321–327

    Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102: 5005–5017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Beutler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beutler, G., Jäggi, A., Mervart, L. et al. The celestial mechanics approach: theoretical foundations. J Geod 84, 605–624 (2010). https://doi.org/10.1007/s00190-010-0401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0401-7

Keywords

Navigation