Skip to main content
Log in

Regional geoid determination in Antarctica utilizing airborne gravity and topography data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Antarctica is the only continent that suffers major gaps in terrestrial gravity data coverage. To overcome this problem and to close these gaps as well as to densify the global satellite gravity field solutions, the International Association of Geodesy (IAG) Commission Project 2.4 “Antarctic Geoid” was set into action. This paper reviews the current situation concerning the gravity field in Antarctica. It is shown that airborne geophysical surveys are the most promising tools to gain new gravity data in Antarctica. In this context, a number of projects to be carried out during the International Polar Year 2007/2008 will contribute to this goal. To demonstrate the feasibility of the regional geoid improvement in Antarctica, we present a case study using gravity and topography data of the southern Prince Charles Mountains, East Antarctica. During the processing, the remove–compute– restore (RCR) technique and least-squares collocation (LSC) were applied. Adding signal parts of up to 6 m to the global gravity field model that was used as a basis, the calculated regional quasigeoid reveals the dominant features of bedrock topography in that region, namely the graben structure of the Lambert glacier system. The accuracy of the improved regional quasigeoid is estimated to be at the level of 15 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ADD Consortium (2000) Antarctic digital database, Version 3.0. Database, manual and bibliography. Scientific Commitee on Antarctic Research, Cambridge, manual and bibliography, 93 pp

  2. Aleshkova ND, Golynsky AV, Kurinin RG and Mandrikov VS (2000). Gravity mapping in the southern Weddell Sea region. Polarforschung 67(3): 91–99 (1997, published 2000)

    Google Scholar 

  3. Baron-Hay S, Parsons M, Stenning L (2003) Antarctic magnetic and gravity geophysical survey. acquisition and processing report for Prince Charles Mountains Expedition of Germany and Australia (PCMEGA). Technical Report FAS1550, Fugro Airborne Surveys, Floreat

  4. Barthelmes F (1986) Untersuchungen zur Approximation des äußeren Gravitationsfeldes der Erde durch Punktmassen optimierten Positionen. Veröffentlichungen des Zentralinstituts für Physik der Erde 92, Potsdam

  5. Barthelmes F and Dietrich R (1991). Use of point masses on optimized positions for the approximations of the gravity field. In: Rapp, RH and Sansò, F (eds) IAG Symposia 106 “Determination of the Geoid–Present and Future”, pp 484–493. Springer, New York

    Google Scholar 

  6. Baur O, Sneeuw N (2006) The Slepian approach revisited: dealing with the polar gap in satellite based geopotential recovery. In: Proc. 3rd international GOCE user workshop, 6–8 November 2006, Frascati, CD version, 8 pp

  7. Bell RE, Childers VA, Arko RA, Blankenship DD and Brozena JM (1999). Airborne gravity and precise positioning for geologic applications. J Geophys Res 104(B7): 15281–15292 doi: 10.1029/1999JB900.122

    Article  Google Scholar 

  8. Boger SD and Wilson CJL (2005). Early Cambrian crustal shortening and a clockwise P-T-t path from the southern Prince Charles Mountains, East Antarctica: implications for the formation of Gondwana. J Metamorphic Geol 23(7): 603–623 doi: 10.1111/j.1525-1314.2005.00,598.x

    Article  Google Scholar 

  9. Coren F, Marson I, Stoka M and Zanolla C (1997). Computation of the Moho depths and geoid undulation from gravity data in the Ross Sea (Antarctica). In: Ricci, CA (eds) The Antarctic region: geological evidence and processes, Proc. VII Intl. Symp. Antarctic Earth Sciences, Siena, 1995, pp 603–608. Terra Antartica Publication, Siena

    Google Scholar 

  10. Coren F, Sterzai P, Capra A, Bitelli G (2004) Local gravimetric geoid determination in North Victoria Land (Antarctica). Presentation at IAG International Symposium “Gravity, Geoid and Space Missions” (GGSM 2004), Porto, August 30–September 3, 2004

  11. Damaske D and McLean M (2005). An aerogeophysical survey south of the Prince Charles Mountains, East Antarctica. Terra Antarctica 12(2): 87–98

    Google Scholar 

  12. Damm V (2007) A subglacial topographic model of the southern drainage area of the Lambert Glacier/Amery ice shelf system–results of an airborne ice thickness survey south of the Prince Charles Mountains. Terra Antarctica (accepted for publication)

  13. Drewes H (2007). Science rationale of the global geodetic observing system (GGOS). In: Tregoning, P and Rizos, C (eds) IAG symposia 130 “Dynamic Planet—Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools”, pp 703–710. Springer, Berlin

    Google Scholar 

  14. Drinkwater MR, Floberghagen R, Haagmans R, Muzi D and Popescu A (2003). GOCE: ESA’s first Earth Explorer Core mission. In: Beutler, GB, Drinkwater, MR, Rummel, R and Steiger R von (eds) Earth gravity field from space—from sensors to earth sciences, Space Sciences Series of ISSI, vol 18, pp 419–432. Kluwer, Dordrecht

    Google Scholar 

  15. Ferraccioli F, Jones PC, Curtis ML and Leat PT (2005). Subglacial imprints of early Gondwana break-up as identified from high resolution aerogeophysical data over western Dronning Maud Land, East Antarctica. Terra Nova 17: 573–579 doi: 10.1111/j.1365-3121.2005.00.651.x

    Article  Google Scholar 

  16. Ferraccioli F, Jones PC, Vaughan APM and Leat PT (2006). New aerogeophysical view of the Antarctic Peninsula: More pieces, less puzzle. Geophys Res Lett 33: L05,310 doi: 10.1029/2005GL024.636

    Article  Google Scholar 

  17. Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report 355, Ohio State University, Columbus

  18. Forsberg R (1993). Impact of airborne gravimetry on geoid determination—the Greenland example. Bull Int Geoid Service 2: 32–43

    Google Scholar 

  19. Forsberg R, Brozena JM (1993) The Greenland Airborne Gravity Project—Comparison of airborne and terrestrial data. In: Montag H, Reigber C (eds) IAG symposia vol 112 (7th Intl Symp “Geodesy and Physics of the Earth”, Potsdam, Oct. 5–10, 1992), Springer, Berlin, pp 171–175

  20. Forsberg R and Tscherning C (1997). Topographic effects in gravity modelling for BVP. In: Sansó, F and Rummel, R (eds) Geodetic boundary value problems in view of the one centimeter geoid, Lecture Notes in Earth Sciences, vol 65, pp 241–272. Springer, Berlin

    Google Scholar 

  21. Forsberg R, Tscherning C, Knudsen P (2003) GRAVSOFT—Geodetic Gravity Field Modelling Programs. Kort & Matrikelstyrelsen (overview manual)

  22. Förste C, Flechtner F, Schmidt R, Meyer U, Stubenvoll R, Barthelmes F, König R, Neumeyer KH, Rothacher M, Reigber C, Biancale R, Bruinsma S, Lemoine JM, Raimondo JC (2005) A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/gravimetry surface gravity data. Poster presentation, EGU General Assembly, April 24–29, 2005, Vienna

  23. Förste C, Flechtner F, Schmidt R, König R, Meyer U, Stubenvoll R, Rothacher M, Barthelmes F, Neumayer H, Biancale R, Bruinsma S, Lemoine JM, Loyer S (2006) A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface data—EIGEN-GL04C. Presentation at EGU Gen. Assembly, Vienna, 3–7 April 2006 (Abstr. 03462)

  24. Fritzsche D (2005) Gravimetric profiling in central dronning Maud Land, East Antarctica. In: Paech H (ed) International Geomaud Expedition of the BGR to Central Dronning Maud Land in 1995/96, Volume II: Geophysical Results, Geolog. Jahrbuch, B97, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 165–176

  25. Fuchs K, Soffel H (eds) (1984) Geophysik der festen Erde, des Mondes und der Planeten. Landolt-Börnstein, Neue Serie, Gruppe V: Geophysik und Weltraumforschung, Band 2, Teilband a. Springer, Berlin

  26. Hackney RI and Featherstone WE (2003). Geodetic versus geophysical perspectives of the ‘gravity anomaly’. Geophys J Int 154: 35–43

    Article  Google Scholar 

  27. Holt JW, Richter TG, Kempf SD, Morse DL and Blankenship DD (2006). Airborne gravity over Lake Vostok and adjacent highlands of East Antarctica. Geochem Geophys Geosys 7(11): 15 doi: 10.1029/2005GC001.177

    Article  Google Scholar 

  28. Horwath M, Dietrich R, Baessler M, Nixdorf U, Steinhage D, Fritzsche D, Damm V and Reitmayr G (2006). Nivlisen, an Antarctic ice shelf in Dronning Maud Land: Geodetic-glaciological results from a combined analysis of ice thickness, ice surface height and ice flow observations. J Glac 52(176): 17–30

    Article  Google Scholar 

  29. Jones PC, Johnson AC, Corr H and Frese RRB von (2002). Detecting rift basins in the Evans Ice Stream region of West Antarctica using airborne gravity data. Tectonophys 347: 25–41

    Article  Google Scholar 

  30. Karner GD, Studinger M and Bell RE (2005). Gravity anomalies of sedimentary basins and their mechanical implications: application to the Ross Sea basins, West Antarctica. Earth Planet Sci Lett 235: 577–596 doi: 10.1016/j.epsl.2005.04.016

    Article  Google Scholar 

  31. Kenyon S and Forsberg R (2002). Arctic Gravity Project—A Status. In: Sideris, M (eds) Gravity, geoid and geodynamics 2000, IAG symposium 123, pp 391–395. Springer, Heidelberg

    Google Scholar 

  32. Knudsen P (1987). Estimation and modelling of the local empirical covariance function using gravity and satellite altimeter data. Bull Géod 61: 145–160 (J Geod 61(2), doi: 10.1007/BF02521264)

    Article  Google Scholar 

  33. Korth W, Dietrich R, Reitmayr G, Damm V (1998) Regional geoid improvement based on surface gravity data. In: Forsberg R, Feissl M, Dietrich R (eds) IAG symposia 119 “Geodesy on the Move. Gravity, Geoid, Geodynamics, and Antarctica.” (Proc. IAG Scientific Assembly, Rio de Janeiro, Sept. 3–9, 1997). Springer, Berlin, pp 523–528

  34. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and NIMA geopotential model EGM96. NASA/TP 1998-206861, NASA Goddard Space Flight Center, Greenbelt

  35. Lythe MB, Vaughan DG, the BEDMAP Consortium (2000) BEDMAP – Bed Topography of the Antarctic. 1:10,000,000 scale map. BAS (Misc) 9. British Antarctic Survey, Cambridge

  36. Mäkinen J, Amalvict M, Shibuya K and Fukuda Y (2007). Absolute gravimetry in Antarctica: status and prospects. J Geodyn 43: 339–357 doi: 10.1016/j.jog.2006.08.002

    Article  Google Scholar 

  37. Mayer-Gürr T, Eicker A and Ilke KH (2006). Gravity field recovery from GRACE-SST data of short arcs. In: Flury, J, Rummel, R, Reigber, C, Rothacher, M, Boedecker, G, and Schreiber, U (eds) Observation of the Earth system from space, pp 131–148. Springer, Berlin

    Chapter  Google Scholar 

  38. McLean M and Reitmayr G (2005). An airborne gravity survey south of the Prince Charles Mountains, East Antarctica. Terra Antarctica 12(2): 99–108

    Google Scholar 

  39. Moritz H (1984). Geodetic reference system 1980. Bull Géod 58: 395–405 (J. Geod. 58(3), 388-398, doi: 10.1007/BF02519014)

    Google Scholar 

  40. Nixdorf U, Müller J, Riedel S, Scheinert M, Steinhage D, Wiehl M, Jokat W, Dietrich R, Miller H (2004) Airborne gravity measurements in Dronning Maud Land for the validation, densification and interpretation of new satellite data. Presentation at XXVIII SCAR Meeting and Open Science Conference (SCAR 28), Bremen, July 25–31, 2004

  41. Reigber C, Luehr H and Schwintzer P (2002). CHAMP Mission Status. Adv Space Res 30(2): 129–134

    Article  Google Scholar 

  42. Reitmayr G (1997) Gravity studies of Victoria Land and adjacent Oceans, Antarctica. In: Ricci CA (ed) The Antarctic Region: geological evidence and processes, Proc VII Intl Symp Antarctic Earth Sciences, Siena, 1995, Terra Antartica Publication, Siena, pp 597–602

  43. Reitmayr G (2003) Continuation of gravity measurements in Victoria Land and at the Oates Coast, Antarctica, during GANOVEX VII. In: Geolog. Jahrbuch, B95, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 209–235

  44. Reitmayr G (2005) Gravity survey in central Dronning Maud Land, East Antarctica, during the 1995/96 GeoMaud Expedition. In: Paech H (ed) International Geomaud Expedition of the BGR to Central Dronning Maud Land in 1995/96, Volume II: Geophysical Results, Geolog. Jahrbuch, B97, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 141–164

  45. Rudolph S, Kusche J and Ilk KH (2002). Investigations on the polar gap problem in ESA’s gravity field and steady-state ocean circulation explorer mission (GOCE). J Geodyn 33(1): 65–74

    Article  Google Scholar 

  46. Rummel R, Balmino G, Johannessen J, Visser P and Woodworth P (2002). Dedicated gravity field missions—principles and aims. J Geodyn 33(1–2): 3–20

    Article  Google Scholar 

  47. Scheinert M (2005a) The Antarctic Geoid Project: challenges and chances. In: Rizos C, Tregoning P et al (eds) Dynamic Planet 2005—Program and Abstract Book, presentation abstract 345, p 155, Joint Assembly of IAG, IAPSO and IABO, Cairns, August 22–26, 2005

  48. Scheinert M (2005). The Antarctic Geoid Project: status report and next activities. In: Jekeli, C, Bastos, L and Fernandes, J (eds) IAG Symposia vol 129 “Gravity, Geoid and Space Missions”, pp 137–142. Springer, Berlin

    Google Scholar 

  49. Scheinert M, Capra A, Dietrich R, Müller J, Aleshkova N, Leitchenkov G (2006a) The Antarctic gravity field: status, improvements and prospects of the international polar year. Presentation at the SCAR XXIX Open Science Conference, Hobart, 9–16 July 2006

  50. Scheinert M, Capra A, Dietrich R, Müller J, Aleshkova N, Leitchenkov G, Damaske D (2006b) Improvement and densification of the gravity field in antarctica: the Antarctic Geoid Project. Presentation at the 1st international symposium of the International Gravity Field Service (IGFS) Gravity Field of the Earth, Istanbul, Aug 28–Sept 01, 2006

  51. Schöne T (1997) Ein Beitrag zum Schwerefeld im Bereich des Wedellmeeres, Antarktis – Nutzung von Altimetermessungen des GEOSAT und ERS–1. Berichte zur Polarforschung 220, Alfred-Wegener-Institut für Polar- und Meeresforschung

  52. Sjöberg LE (2005). A discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modelling. J Geod 78: 645–653 doi: 10.1007/s00190-004-0430-1

    Article  Google Scholar 

  53. Sneeuw N, van Gelderen M (1997) The polar gap. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, Lecture Notes in Earth Sciences vol 65. Springer, Berlin, pp 559–568

  54. Studinger M (1998) Compilation and analysis of potential field data from the Weddell Sea, Antarctica: implications for the break-up of Gondwana. Reports on Polar Research 276/1998, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven

  55. Studinger M, Bell RE, Finn CA and Blankenship DD (2002). Mesozoic and cenozoic extensional tectonics of the West Antarctic Rift System from high-resolution airborne geophysical mapping. Roy Soc of New Zealand Bull 35: 563–569

    Google Scholar 

  56. Studinger M, Karner GD, Bell RE, Levin V, Raymond CA and Tikku AA (2003). Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth Planet Sci Lett 216(4): 663–677

    Article  Google Scholar 

  57. Studinger M, Bell RE, Buck WR, Karner GD and Blankenship DD (2004). Sub-ice geology inland of the Transantarctic Mountains in light of new aerogeophysical data. Earth Planet Sci Lett 220: 391–408 doi: 10.1016/S0012-821X(04)00.066-4

    Article  Google Scholar 

  58. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S and Wang F (2005). GGM02—an improved earth gravity field model from GRACE. J Geod 79(8): 467–478 doi: 10.1007/s00190-005-0480-z

    Article  Google Scholar 

  59. Tapley BD, Bettadpur S, Watkins M and Reigber C (2004). The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31: L09607 doi: 10.1029/2004GL019920

    Article  Google Scholar 

  60. Tscherning C (1974) A Fortran IV Program for the determination of the anomalous potential using Least Squares Collocation. Report 212, Ohio State University, Columbus

  61. Tscherning C, Rapp R (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Report 208, Ohio State University, Columbus

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Scheinert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheinert, M., Müller, J., Dietrich, R. et al. Regional geoid determination in Antarctica utilizing airborne gravity and topography data. J Geod 82, 403–414 (2008). https://doi.org/10.1007/s00190-007-0189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-007-0189-2

Keywords

Navigation