Skip to main content
Log in

Regional Gravity Field Model of Egypt Based on Satellite and Terrestrial Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study presents a recent combined regional gravity field model over Egypt, developed by integrating satellite and terrestrial data via applying the remove-compute-restore (RCR) principle and the least-squares collocation (LSC) procedure. A high-resolution digital terrain model was exploited for the computation of the terrain and residual terrain corrections. Hereby, all the signals that can be modelled or deterministically computed are considered known and then removed in order to reduce the order of magnitude of the input gravity data prior to applying the LSC. Several GOCE-only and combined global geopotential models (GGMs) have been thoroughly investigated with respect to the EGM2008, in which the space-wise (SPW) solution, namely the SPW-R5 model, demonstrated the best performance. For the development of the combined model, the SPW-R5 GGM has been integrated with both the EGM2008 GGM and the terrestrial data retrieved from 56,250 gravity stations of the Getech data, acquired in the framework of the African Gravity Project. The combined regional gravity model was compared to the state-of-art XGM2016 global gravity model. The standard deviation of the differences is 18.0 mGal in terms of Bouguer anomalies. The combined regional model fits well with the terrestrial gravity data along the chosen North–South oriented profile through the Nile Delta region. The improvements of the developed combined regional model over the XGM2016 are due to the use of a more extensive terrestrial dataset. In conclusion, our model is more suitable than solely using the ground data or GGMs for regional density modelling over Egypt. As an example, the comparison of using a global or regionally defined gravity model with the forward gravity modelling based on Saleh (Acta Geodaetica et Geophysica Hungarica 47(4):402–429, 2012) density model is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abd-Elmotaal,H. (2008). Determination of the geoid in Egypt using heterogeneous geodetic data.NRIAG Journal of Geophysics, special issue, 507–531.

  • Abd-Elmotaal, H., Seitz, K., Kühtreiber, N., & Heck, B. (2018). AFRGDB_V2.0: The gravity database for the geoid determination in Africa. In The international association of geodesy symposia (pp. 1–10). Berlin, Heidelberg: Springer. https://doi.org/10.1007/1345_2018_29.

    Google Scholar 

  • Alnaggar, D. (1986). Gravimetric geoid for Egypt using high-degree tailored reference geopotential model. Ph.D. dissertation, Cairo University, Egypt.

  • Arrell, K., Wise, S., Wood, J., & Donoghue, D. (2008). Spectral filtering as a method of visualising and removing striped artefacts in digital elevation data. Earth Surface Processes and Landforms, 33(6), 943–961. https://doi.org/10.1002/esp.1597.

    Article  Google Scholar 

  • Barzaghi, R., Fermi, A., Tarantola, S., & Sansó, F. (1993). Spectral techniques in inverse stokes and Overdetermined problems. Surveys in Geophysics, 14(4), 461–475. https://doi.org/10.1007/BF00690572.

    Article  Google Scholar 

  • Bomfim, E. P., Braitenberg, C., & Molina, E. C. (2013). Mutual evaluation of global gravity models (EGM2008 and GOCE) and terrestrial data in Amazon Basin, Brazil. Geophysical Journal International, 195(2), 870–882. https://doi.org/10.1093/gji/ggt283.

    Article  Google Scholar 

  • Braitenberg, C., Sampietro, D., Pivetta, T., Zuliani, D., Barbagallo, A., Fabris, P., Rossi, L., Julius F., & Mansi, A. H. (2016). Gravity for detecting caves: Airborne and terrestrial simulations based on a comprehensive Karstic Cave benchmark. Pure and Applied Geophysics, 173(4), 1243–1264. https://doi.org/10.1007/s00024-015-1182-y.

    Article  Google Scholar 

  • Brockmann, J. M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., & Schuh, W.-D. (2014). EGM-TIM-RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophysical Research Letters, 41(22), 8089–8099. https://doi.org/10.1002/2014GL061904.

    Article  Google Scholar 

  • Bruinsma, S. L., Förste, C., Abrikosov, O., Marty, J.-C., Rio, M.-H., Mulet, S., & Bonvalot, S. (2013). The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 40, 3607–3612. https://doi.org/10.1002/grl.50716.

    Article  Google Scholar 

  • Capponi, M., Mansi, A. H., & Sampietro, D. (2017). Improving the computation of the gravitational terrain effect close to ground stations in the GTE software. Studia Geophysica et Geodaetica, 2017, 1–17. https://doi.org/10.1007/s11200-017-0814-3.

    Google Scholar 

  • Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research, 100(B6), 9761–9788. https://doi.org/10.1029/95JB00259.

    Article  Google Scholar 

  • Dawod, G. M. (2008). Towards the redefinition of the Egyptian geoid: Performance analysis of recent global geoid and digital terrain models. Journal of Spatial Science, 53(1), 31–42. https://doi.org/10.1080/14498596.2008.9635133.

    Article  Google Scholar 

  • Drinkwater, M. R., Floberghagen, R., Haagmans, R., Muzi, D., & Popescu, A. (2003). GOCE: ESA’s first earth explorer core mission. In: G. Beutler, M.R. Drinkwater, R. Rummel, & R. Von Steiger (Eds.), Earth Gravity Field from Spacefrom sensors to earth sciences. Space Sciences Series of ISSI, Vol. 17. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-1333-7_36.

  • European GOCE Gravity-Consortium (2010). GOCE level 2 product data handbook, GO-MA-HPF-GS-0110, Issue 4.2. Noordwijk: European Space Agency. http://earth.esa.int/pub/ESA_DOC/GOCE/Product_Data_Handbook_4.1.pdf.

  • Fairhead, J. D., Watts, A. B., Chevalier, P., El-Haddadeh, B., Green, C. M., Stuart, G. W., Whaler, K. A., & Whindle, I. (1988). African gravity project. In GETECH, Department of Earth Sciences, University of Leeds, University of Leeds Industrial Services Ltd., Leeds, UK.

  • Farr, Tom. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2). https://doi.org/10.1029/2005RG000183.

  • Forsberg R. (1984). Study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. In Report 355, Department of Geodetic Science and Surveying. Columbus: Ohio State University. http://www.dtic.mil/docs/citations/ADA150788.

  • Förste, C., Bruinsma, S., Abrikosov, O., Flechtner, F., Marty, J. C., Lemoine, J. M., Dahle, C., Neumayer, H., Barthelmes, F., König, R., & Biancale, R. (2014). EIGEN-6C4—the latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse. In EGU general assembly conference abstracts, Vol. 16, Vienna. https://doi.org/10.5880/icgem.2015.1.

  • Gatti, A., Reguzzoni, M., Sansò, F., & Venuti, G. (2013). The height datum problem and the role of satellite gravity models. Journal of Geodesy, 87(1), 15–22. https://doi.org/10.1007/s00190-012-0574-3.

    Article  Google Scholar 

  • Gatti, A., Reguzzoni, M., Migliaccio, F., & Sansó, F. (2016). Computation and assessment of the fifth release of the GOCE-only space-wise solution. Thessaloniki, Greece, GGHS 2016: Presented at the 1st Joint Commission 2 and IGFS Meeting, 19-23 September 2016. https://doi.org/10.13140/RG.2.2.28625.94569.

  • Gilardoni, M., Reguzzoni, M., & Sampietro, D. (2013). A least-squares collocation procedure to merge local geoids with the aid of satellite-only gravity models: The Italian/Swiss geoids case study. Bollettino di Geofisica Teorica e Applicata, 54(4), 303–319. https://doi.org/10.4430/bgta0111.

    Google Scholar 

  • Gilardoni, M., Reguzzoni, M., & Sampietro, D. (2016). GECO: a global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 60(2), 228–247. https://doi.org/10.1007/s11200-015-1114-4.

    Article  Google Scholar 

  • Godah, W., & Krynski, J. (2015). Comparison of GGMs based on one year GOCE observations with the EGM2008 and terrestrial data over the area of Sudan. International Journal of Applied Earth Observation and Geoinformation, 35(A), 128–135. https://doi.org/10.1016/j.jag.2013.11.003.

    Article  Google Scholar 

  • Götze, H., & Lahmeyer, B. (1988). Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics, 53(8), 1096–1108. https://doi.org/10.1190/1.1442546.

    Article  Google Scholar 

  • Hanafy, M. S., & El Tokhey, M. A. (1993). Simulation studies for improving the geoid in Egypt. In Geodesy and Physics of the Earth, 60(2), 153–158. Berlin, Heidelberg: Springer. ISBN:978-3-642-78149-0.

  • Heiskanen, W. A., & Moritz, H. (1967). Advanced physical Geodesy. San Francisco: W.H. Freeman and Company.

    Google Scholar 

  • Kaula, W. M. (1966). Theory of satellite Geodesy. Blaisdell Publishing Company, Waltham, Republished 2000 by Dover Publications Inc., Mineola.

  • Knudsen, P. (1987). Estimation and modelling of the local empirical covariance functions using gravity and satellite altimeter data. Bulletin géodésique, 61(2), 44, 145–160. https://doi.org/10.1007/BF02521264.

  • Krarup, T. (1969). A contribution to the mathematical foundation of physical geodesy. Geodetic Institute Copenhagen, 44(80), 44.

    Google Scholar 

  • Kreh, M. (2012). Bessel functions. Lecture notes, Project for the Penn State StateGöttingen summer school on number theory. http://www.math.psu.edu/papikian/Kreh.pdf.

  • Makris, J., Weigel, W., Moeller, L., Goldform, P., Behle, A., Stoefen, B., Allam, A., Maamoun, M., Delibasis, N., Perissoratis, K., Avedik, F., & Giese, P. (1982). Deep seismic soundings in Egypt, Part 1: The Mediterranean Sea between Crete-Sidi Barrani and the coastal areas of Egypt. Internal Report, University of Hamburg, FRG.

  • Mansi, A. H. (2016). Airborne gravity field modelling. Ph.D. dissertation, Politecnico di Milano, Italy.

  • Mansi, A. H., Capponi, M., & Sampietro, D. (2017). Downward continuation of airborne gravity data by means of the change of boundary approach. Pure and Applied Geophysics, 2017, 1–12. https://doi.org/10.1007/s00024-017-1717-5.

    Google Scholar 

  • Marzouk, I. A. (1988). Study of crustal structure of Egypt deduced from deep seismic and gravity data. Ph.D. dissertation, University of Hamburg, FRG.

  • Mayer-Gürr, T., Pail, R., Gruber, T., Fecher, T., Rexer, M., Schuh, W.-D., Kusche, J., Brockmann, J.-M., Rieser, D., Zehentner, N., Kvas, A., Klinger, B., Baur, O., Höck, E., Krauss, S., & Jäggi, A. (2015). The combined satellite gravity field model GOCO05s. In Presented at EGU General Assembly 2015, Vienna, 12–17 April.

  • Moritz H. (1972). Advanced least-squares methods. In Reports of the Department of Geodetic Science, No. 175. Columbus, USA: The Ohio State University.

  • Moritz, H. (1978). Least-squares collocation. Reviews of Geophysics, 16(3), 421–430. https://doi.org/10.1029/RG016i003p00421.

    Article  Google Scholar 

  • Moritz, H. (1989). Advanced physical geodesy. Karlsruhe: Wichmann Verlag.

    Google Scholar 

  • Pail, R., Goiginger, H., Mayrhofer, R., Schuh, W.-D., Brockmann, J. M., Krasbutter, I., Höck, E., & Fecher, T. (2010). GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. In The ESA Living Planet Symposium, Vol. 28, Bergen, 28 June–2 July 2010.

  • Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.-D., Höck, E., Reguzzoni, M., Brockmann, J. M., Abrikosov, O., Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sansò, F., & Tscherning, C. C. (2011). First GOCE gravity field models derived by three different approaches. Journal of Geodesy, 85(819), 845–860. https://doi.org/10.1007/s00190-011-0467-x.

    Google Scholar 

  • Pail, R., Fecher, T., Barnes, D., Factor, J., Holmes, S., Gruber, T., & Zingerle, P. (2016). The experimental gravity field model XGM2016. In International symposium on gravity, geoid and height system 2016, Thessaloniki, Greece.

  • Pavlis, N. K., Holmes, S. A., & Kenyon, S. C. (2008). An earth gravitational model to degree 2160: EGM2008. In General assembly of the European geosciences union 2008, Vienna, Austria. http://mt.dgfi.tum.de/typo3_mt/fileadmin/2kolloquium_muc/2008-10-08/Bosch/EGM2008.pdf.

  • Reigber, C., Lühr, H., & Schwintzer, P. (1999). The CHAMP geopotential mission. Bollettino di Geofisica Teorica ed Applicata, 40(3–4), 285—289. http://www3.ogs.trieste.it/bgta/pdf/bgta40.3.4_REIGBER1.pdf.

  • Rummel, R. (2010). GOCE: Gravitational gradiometry in a satellite. In: W. Freeden, F.M.Z. Nashed, & T. Sonar (Eds.), Handbook of geomathematics, Vol. 2 (pp. 93–103). Berlin: Springer. https://doi.org/10.1007/978-3-642-01546-5_4.

  • Saleh, S. (2012). 3D crustal structure and its tectonic implication for Nile delta and greater Cairo regions, Egypt, from geophysical data. Acta Geodaetica et Geophysica Hungarica, 47(4), 402–429, Akadémiai Kiadó. https://doi.org/10.1556/AGeod.47.2012.4.3.

  • Sampietro, D., Capponi, M., Mansi, A. H., Gatti, A., Marchetti, P., & Sansò, F. (2017). Space–Wise approach for airborne gravity data modelling. Journal of Geodesy, 91(5), 535–545. https://doi.org/10.1007/s00190-016-0981-y.

    Article  Google Scholar 

  • Sampietro, D., Capponi, M., Triglione, D., Mansi, A. H., Marchetti, P., & Sansò, F. (2016). GTE: a new software for gravitational terrain effect computation: Theory and performances. Pure and Applied Geophysics, 173(7), 2435–2453. https://doi.org/10.1007/s00024-016-1265-4.

    Article  Google Scholar 

  • Sampietro, D., Mansi, A. H., & Capponi, M. (2018). Moho depth and crustal architecture beneath the Levant Basin from Global Gravity Field Model. Geosciences, 8(6), 200–214. https://doi.org/10.3390/geosciences8060200.

    Article  Google Scholar 

  • Sampietro, D., Mansi, A. H., & Capponi, M. (2018). A new tool for airborne gravimetry survey simulation. Geosciences, 8(8), 292–301. https://doi.org/10.3390/geosciences8080292.

    Article  Google Scholar 

  • Sansó F., & Sideris M.G. (2017). Geodetic boundary value problem: The equivalence between Molodensky’s and Helmert’s solutions. Springer. ISBN: 3319463586 and 9783319463582.

  • Schmidt, S., Götze, H.-J., Fichler, C., & Alvers, M. (2010). IGMAS+ a new 3D Gravity, FTG and magnetic modeling software. In: A. Zipf, K. Behncke, F. Hillen, & J. Schefermeyer (Eds.), Die Welt Im Netz (pp. 57–63). Geoinformatik 2010, Kiel, 17.3.-19.3.2010.

  • Shih, H., Hwang, C., Barriot, J. P., Mouyen, M., Corréia, P., Lequeux, D., & Sichoix, L. (2015). High-resolution gravity and geoid models in Tahiti obtained from new airborne and land gravity observations: data fusion by spectral combination. Earth, Planets and Space, 67(1), 124–140. https://doi.org/10.1186/s40623-015-0297-9. https://earth-planets-space.springeropen.com/articles/10.1186/s40623-015-0297-9.

  • Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9), 1–4. https://doi.org/10.1029/2004GL019920.

    Article  Google Scholar 

  • Tscherning, C.C. (1985). Local approximation of the gravity potential by least squares collocation. In K.P. Schwarz (Ed.), Local gravity field approximation (pp. 277–361). The University of Calgary, Alberta, No. 60003.

  • Tscherning, C.C., Forsberg, R., & Knudsen, P. (1992). The GRAVSOFT package for geoid determination. In Proceedings of the 1st continental workshop on the Geoid in Europe (pp. 327–334). Research Institute of Geodesy, Topography and Cartography, Prague.

  • Walker, W., Kellndorfer, J. M., & Pierce, L. (2007). Quality assessment of SRTM C- and Xband interferometric data: Implications for the retrieval of vegetation canopy height. Remote Sensing of Environment, 106(4), 428–448. https://doi.org/10.1016/j.rse.2006.09.007.

    Article  Google Scholar 

  • Watson, G.N. (1995). A treatise on the theory of Bessel functions (2nd ed.). Montpelier: Cambridge University Press. ISBN 0521483913 and 9780521483919.

  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos, Transactions American Geophysical Union, 94(5), 409–410. https://doi.org/10.1002/2013EO450001.

    Article  Google Scholar 

  • Yoder, C. F., Williams, J. G., Dickey, J. O., Schutz, B. E., Eanes, R. J., & Tapley, B. D. (1983). Secular variation of Earth’s gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation. Nature, 303, 757–762. https://doi.org/10.1038/303757a0.

    Article  Google Scholar 

  • Zaki, A., Mansi, A. H., Selim, M., Rabah, M., & El-Fiky, G. (2018). Comparison of satellite altimetric gravity and global geopotential models with shipborne gravity in the red sea. Marine Geodesy, 41(3), 258–269. https://doi.org/10.1080/01490419.2017.1414088.

    Article  Google Scholar 

Download references

Acknowledgements

The present work has been supported by the German Academic Exchange Service (DAAD). We would like to thank Basem Elsaka (University of Bonn, Germany) for the helpful discussion. The authors also would like to thank Getech UK for providing the terrestrial gravity data over Egypt. The spatial representations of the results have been plotted using the GMT5 (Generic Mapping Tools) software (Wessel et al. 2013). The spherical harmonic syntheses have been computed using the GEOEGM module of the GRAVSOFT software (Tscherning et al. 1992).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Sobh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobh, M., Mansi, A.H., Campbell, S. et al. Regional Gravity Field Model of Egypt Based on Satellite and Terrestrial Data. Pure Appl. Geophys. 176, 767–786 (2019). https://doi.org/10.1007/s00024-018-1982-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1982-y

Keywords

Navigation