Skip to main content
Log in

Computational complexity of convoy movement planning problems

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

Convoy movement planning problems arise in a number of important logistical contexts, including military planning, railroad optimization and automated guided vehicle routing. In the convoy movement problem (CMP), a set of convoys, with specified origins and destinations, are to be routed with the objective of minimizing either makespan or total flow time, while observing a number of side constraints. This paper characterizes the computational complexity of several restricted classes of CMPs. The principal objective is to identify the most parsimonious set of problem features that make the CMP intractable. A polynomial-time algorithm is provided for the single criterion two-convoy movement problem. The performance of a simple prioritization–idling approximation algorithm is also analyzed for the K-convoy movement problem. Error bounds are developed for the makespan and flow time objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahuja RK, Liu J, Orlin JB, Sharma D, Shughart LA (2002) Solving real-life locomotive scheduling problems. Working paper, Operations Research Center at M.I.T., April 2002

  • Aronson JE (1989) A survey of dynamic network flows. Ann Oper Res 20:1–66

    Article  MathSciNet  MATH  Google Scholar 

  • Bovet J, Constantin C, de Werra D (1991) A convoy scheduling problem. Discrete Appl Math 30:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Brucker P, Heitmann S, Knust S (2002) Scheduling railway traffic at a construction site. OR Spectrum 24:19–30

    Article  MathSciNet  MATH  Google Scholar 

  • Bruno G, Ghiani G, Improta G (2000) Dynamic positioning of idle automated guided vehicles. J Intell Manuf 11:209–215

    Article  Google Scholar 

  • Burdett RL, Kozan E (2010) A disjunctive graph model and framework for constructing new train schedules. Eur J Oper Res 200(1):85–98

  • Chardaire P, McKeown GP, Verity-Harrison SA, Richardson SB (2005) Solving a time–space network formulation for the convoy movement problem. Oper Res 53(2):219–230

    Article  MathSciNet  MATH  Google Scholar 

  • Demange M, Ekim T, De Werra D (2009) A tutorial on the use of graph coloring for some problems in robotics. Eur J Oper Res 192:41–55

    Article  MATH  Google Scholar 

  • Desrochers M, Soumis F (1988) A generalized permanent labeling algorithm for the shortest path problem with time windows. INFOR 26(191–212):1988

    Google Scholar 

  • Di Ianni M (1998) Efficient delay routing. Theoret Comput Sci 196(1998):131–151

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrarini L, Piroddi L, Allegri S (1999) A comparative performance analysis of deadlock avoidance control algorithms for FMS. J Intell Manuf 10:569–585

    Article  Google Scholar 

  • Fleisher L, Skutella M (2003) Minimum cost flows over time without intermediate storage. In: Symposium on discrete algorithms, Proceedings of the 14th annual ACM-SIAM meeting, Baltimore, MD

  • Fleisher L, Skutella M (2007) Quickest flows over time. SIAM J Comput 36(6):1600–1630

    Article  MathSciNet  Google Scholar 

  • Ford LR, Fulkerson DR (1958) Constructing maximal dynamic flows from static flows. Oper Res 6:419–433

    Article  MathSciNet  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.H.Freeman and Company, San Francisco. ISBN:0-7167-1045-5

  • Goldstein D, Shehab T, Casse J, Lin HC (2010) On the formulation and solution of the convoy routing problem. Transp Res E Logist Transp Rev 46(4):520–533

    Article  Google Scholar 

  • Gopalan R, Narayanaswamy NS (2009) Analysis of algorithms for an online version of the convoy movement problem. J Oper Res Soc 60:1230–1236

  • Hall A, Hippler S, Skutella M (2007) Multicommodity flows over time: efficient algorithms and complexity. Theor Comput Sci 379:387–404

  • Handler GY, Zang I (1980) A dual algorithm for the constrained shortest path problem. Networks 10:293–310

    Article  MathSciNet  Google Scholar 

  • Hane CA, Barnhart C, Johnson EL, Marsten R, Nemhauser GL, Sigismondi G (1995) The fleet assignment problem: solving a large scale integer program. Math Program 70(1–3):211–232

  • Harrison SA, Rayward-Smith VJ (1999) Minimal cost linkages in graphs. Ann Oper Res 86:295–319

    Article  MathSciNet  Google Scholar 

  • Higgins A, Kozan E, Ferreira L (1996) Optimal scheduling of trains on a single line track. Transp Res B 30(2):147–161

    Article  Google Scholar 

  • Kraay D, Harker P, Chen B (1991) Optimal pacing of trains in freight railroads: model formulation and solution. Oper Res 39(1):82–99

  • Kolesar P, Leister K, Stimpson D, Woodaman R (2012) A simple model of optimal clearance of improvised explosive devices. Ann Oper Res. doi:10.1007/s10479-012-1126-1

  • Koster RBM, Le-Anh T, Van der Meer JR (2004) Testing and classifying vehicle dispatching rules in three real world settings. J Oper Manag 22:369–386

    Article  Google Scholar 

  • Kress M (2001) Efficient strategies for transporting mobile forces. J Oper Res Soc 52:310–317

    Article  MATH  Google Scholar 

  • Krishnamurty N, Batta R, Karwan MH (1993) Developing conflict-free routes for automated guided vehicles. Oper Res 41(6):1077–1090

    Article  Google Scholar 

  • Larson RC, Odoni A (1981) Urban operations research. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Lee Y, Chen C (2009) A heuristic for the train pathing and timetabling problem. Transp Res B 43:837–851

    Article  Google Scholar 

  • Liu J, Ahuja RK, Sahin G (2008) Optimal network configuration and capacity expansion of railroads. J Oper Res Soc 59:911–920

    Article  MATH  Google Scholar 

  • Murali P, Dessouky MM, Ordonez F, Palmer K (2009) A delay estimation technique for single and double track railroads. Transp Res E (in press)

  • Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Park JH, Kim HJ, Lee C (2009) Ubiquitous software controller to prevent deadlocks for automated guided vehicle systems in a container port terminal environment. J Intell Manuf 20(3):321–325

  • Peis B, Skutella M, Wiese A (2010) Packet routing: complexity and algorithms. In: WAOA 2009, LNCS 5893, pp 217–228

  • Ram Kumar PN, Narendran TT (2008) Integer programming formulation for convoy movement problem. Int J Intell Def Support Syst 1(3):177–188

    Google Scholar 

  • Ram Kumar PN, Narendran TT (2009) A mathematical approach for variable speed convoy movement problem. Def Secur Anal 25(2):137–155

    Article  Google Scholar 

  • Ram Kumar PN, Narendran TT (2010) Convoy movement problem—an optimization perspective, innovations in defense support systems—1. Stud Comput Intell 304(2010):79–93

    Article  MathSciNet  Google Scholar 

  • Ram Kumar PN, Narendran TT, Sivakumar AI (2009) Bi-criteria convoy movement problem. J Def Model Simul Appl Methodol Technol 6(3):151–164

    Google Scholar 

  • Sherali HD (1982) Equivalent weights for lexicographic multi-objective programs: characterizations and computations. Eur J Oper Res 11:367–379

    Article  MathSciNet  MATH  Google Scholar 

  • Schupbach K, Zenklusen R (2011) Approximation algorithms for conflict-free vehicle routing. In: ESA 2011, LNCS 6942, pp 640–651

  • Skutella M (2009) An introduction to network flows over time. In: Cook W, Lovász L, Vygen J (eds) Research trends in combinatorial optimization. Springer, Berlin, pp 451–482

    Chapter  Google Scholar 

  • Thangarajoo R, Agussurja L, Lau H A (2008) Hybrid approach to convoy movement planning in urban city. In: Proceedings of the 20th national conference on Innovative applications of artificial intelligence, vol 3, pp 1738–1744

  • Tuson AL, Harrison SA (2005) Problem difficulty of real instances of convoy planning. J Oper Res Soc 56:763–775

    Article  MATH  Google Scholar 

  • Vis I (2006) Survey of research in the design and control of automated guided vehicle systems. Eur J Oper Res 170:677–709

    Article  MATH  Google Scholar 

  • Volgenant A (2002) Solving some lexicographic multi-objective combinatorial problems. Eur J Oper Res 139:578–584

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank the anonymous referees and the Associate editor for tremendously helpful comments that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Gopalan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalan, R. Computational complexity of convoy movement planning problems. Math Meth Oper Res 82, 31–60 (2015). https://doi.org/10.1007/s00186-015-0503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-015-0503-3

Keywords

Navigation