Skip to main content
Log in

High-dimensional sphericity test by extended likelihood ratio

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Testing sphericity of the covariance matrices has been an active part in contemporary statistics. In this paper, we put forward a new test procedure for high-dimensional sphericity test based on the likelihood ratio test (LRT). The proposed test broadens the applicability of LRT which fails when the dimension is larger than the sample size. Under general population with finite fourth moment, the test statistic is shown to be asymptotically normally distributed under the null hypothesis. When the alternative hypothesis is true, the limiting distribution of the test statistic is derived under the spiked model. Simulation studies reveal that the proposed test controls the Type I error rate very well and outperforms some well-known tests in terms of the empirical power in several examined situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson TW (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, Hoboken, NJ

    MATH  Google Scholar 

  • Bai ZD, Jiang DD, Yao JF, Zheng SR (2009) Corrections to LRT on large-dimensional covariance matrix by RMT. Ann Stat 37:3822–3840

    Article  MathSciNet  Google Scholar 

  • Bai ZD, Silverstein JW (2004) CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. 32:553–605

    Article  MathSciNet  Google Scholar 

  • Bai Z, Silverstein JW (2010) Spectral analysis of large dimensional random matrices, 2nd edn. Springer, Springer, New York

    Book  Google Scholar 

  • Birke M, Dette H (2005) A note on testing the covariance matrix for large dimension. Stat Probab Lett 74:281–289

    Article  MathSciNet  Google Scholar 

  • Chen B, Pan G (2015) CLT for linear spectral statistics of normalized sample covariance matrices with the dimension much larger than the sample size. Bernoulli 21:1089–1133

    MathSciNet  MATH  Google Scholar 

  • Chen SX, Zhang LX, Zhong PS (2010) Tests for high-dimensional covariance matrices. J Am Stat Assoc 105:810–819

    Article  MathSciNet  Google Scholar 

  • Ding X (2020) Some sphericity tests for high dimensional data based on ratio of the traces of sample covariance matrices. Stat Prob Lett 156:108613

    Article  MathSciNet  Google Scholar 

  • Fisher TJ, Sun XQ, Gallagher CM (2010) A new test for sphericity of the covariance matrix for high dimensional data. J Multivar. Anal 101:2554–2570

    Article  MathSciNet  Google Scholar 

  • Hu J, Li WM, Liu Z, Zhou W (2019) High-dimensional covariance matrices in elliptical distributions with application to spherical test. Ann Stat 47:527–555

    Article  MathSciNet  Google Scholar 

  • Jiang TF, Q, Y. C, (2015) Likelihood ratio tests for high-dimensional normal distributions. Scand J Stat 42:988–1009

  • Jiang TF, Yang F (2013) Central limit theorems for classical likelihood ratio tests for high-dimensional normal distributions. Ann Stat 41:2029–2074

    MathSciNet  MATH  Google Scholar 

  • John S (1971) Some optimal multivariate tests. Biometrika 58:123–127

    MathSciNet  MATH  Google Scholar 

  • Johnstone IM (2001) On the distribution of the largest eigenvalue in principal components analysis. Ann Stat 29:295–327

    Article  MathSciNet  Google Scholar 

  • Khatri CG, Srivastava MS (1971) On exact non-null distributions of likelihood ratio criteria for sphericity test and equality of two covariance matrices. Sankhyā Ser. A 33:201–206

    MathSciNet  MATH  Google Scholar 

  • Ledoit O, Wolf M (2002) Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann Statist 30:1081–1102

    Article  MathSciNet  Google Scholar 

  • Li Z, Yao JF (2016) Testing the sphericity of a covariance matrix when the dimension is much larger than the sample size. Electron J Stat 10:2973–3010

    MathSciNet  MATH  Google Scholar 

  • Mauchly JW (1940) Significance test for sphericity of a normal n-variate distribution. Ann Math Stat 11:204–209

    Article  MathSciNet  Google Scholar 

  • Muirhead RJ (1982) Aspects of multivariate statistical theory. Wiley, New York

    Book  Google Scholar 

  • Paindaveine D, Verdebout T (2016) On high-dimensional sign tests. Bernoulli 22:1745–1769

    Article  MathSciNet  Google Scholar 

  • Pan GM, Zhou W (2008) Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann Appl Probab 18:1232–1270

    Article  MathSciNet  Google Scholar 

  • Peng LH, Chen SX, Zhou W (2016) More powerful tests for sparse high-dimensional covariances matrices. J Multivar Anal 149:124–143

    Article  MathSciNet  Google Scholar 

  • Srivastava MS (2005) Some tests concerning the covariance matrix in high dimensional data. J Jpn Stat Soc 35:251–272

    Article  MathSciNet  Google Scholar 

  • Srivastava MS, To Kollo, von Rosen D (2011) Some tests for the covariance matrix with fewer observations than the dimension under non-normality. J Multivar Anal 102:1090–1103

    Article  MathSciNet  Google Scholar 

  • Srivastava MS, Yanagihara H, Kubokawa T (2014) Tests for covariance matrices in high dimension with less sample size. J Multivar Anal 130:289–309

    Article  MathSciNet  Google Scholar 

  • Tian XT, Lu YT, Li WM (2015) A robust test for sphericity of high-dimensional covariance matrices. J Multivar Anal 141:217–227

    Article  MathSciNet  Google Scholar 

  • Wang QW, Silverstein JW, Yao JF (2014) A note on the CLT of the LSS for sample covariance matrix from a spiked population model. J Multivar Anal 130:194–207

    Article  MathSciNet  Google Scholar 

  • Wang QW, Yao JF (2013) On the sphericity test with large-dimensional observations. Electron J Stat 7:2164–2192

    MathSciNet  MATH  Google Scholar 

  • Yao JF, Zheng SR, Bai ZD (2015) Large sample covariance matrices and high-dimensional data analysis. Cambridge University Press, New York

    Book  Google Scholar 

  • Zheng SR, Bai ZD, Yao JF (2015) Substitution principle for CLT of linear spectral statistics of high-dimensional sample covariance matrices with applications to hypothesis testing. Ann Stat 43:546–591

    MathSciNet  MATH  Google Scholar 

  • Zou CL, Peng LH, Feng L, Wang ZJ (2014) Multivariate sign-based high-dimensional tests for sphericity. Biometrika 101:229–236

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous referees for their insightful suggestions and comments which significantly improve the quality and the exposition of the paper. This work was supported by the National Natural Science Foundation of China under Grant No. 11471035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 1

Proof

(1) For the M-P law \(F^{y}\left( 1/(x+1)\right) \), according to Proposition 2.10 in Yao et al. (2015), we can deduce that

$$\begin{aligned} F^{y}\left( \frac{1}{1+x}\right)&=\int _{(1-\sqrt{y})^2}^{(1+\sqrt{y})^2}\frac{\frac{1}{1+x}}{2\pi xy}\sqrt{(x-(1-\sqrt{y})^2)((1+\sqrt{y})^2-x)} dx\\&=-\frac{1}{4\pi i} \oint _{|z|=1} \frac{(1-z^2)^2}{\left( 1+|1+\sqrt{y}z|^2\right) z^2(1+\sqrt{y}z)(z+\sqrt{y})}dz. \end{aligned}$$

Observe that on the unit circle \(|z|=1\), \(1+|1+\sqrt{y}z|^2=1+\left( 1+\sqrt{y}z\right) \left( 1+\sqrt{y}/z\right) \). Setting \(z\left( 1+|1+\sqrt{y}z|^2\right) \)=\(\sqrt{y}z^2+(y+2)z+\sqrt{y}=0\), the two roots are

$$\begin{aligned} y_1=\frac{-(y+2)+\sqrt{y^2+4}}{2\sqrt{y}}\in (-1,0),~~~ y_2=\frac{-(y+2)-\sqrt{y^2+4}}{2\sqrt{y}}\notin (-1,0). \end{aligned}$$

Conclusively, by Cauchy’s residue theorem, we arrive at

$$\begin{aligned}&F^{y}\left( \frac{1}{1+x}\right) \nonumber \\&\quad =-\frac{1}{4\pi i} \oint _{|z|=1} \frac{(1-z^2)^2}{y(z-y_1)(z-y_2)z(z+\frac{1}{\sqrt{y}})(z+\sqrt{y})}dz\nonumber \\&\quad =-\frac{1}{2}\left[ \frac{1}{y}+\frac{y-1}{y(y_1+\sqrt{y})(y_2+\sqrt{y})}+\frac{(1-y_1^2)^2}{y(y_1-y_2)y_1\left( y_1+\frac{1}{\sqrt{y}}\right) \left( y_1+\sqrt{y}\right) }\right] , \end{aligned}$$
(16)

where in the contour integral \(z=0\), \(z=-\sqrt{y}\), \(z=y_1\) are poles of order one, whereas \(y_2\notin (-1,0)\) and hence is not a isolated singular point.

Next we calculate the M-P law of \(\log (x+1)\). As \(y\in (0,+\infty )\), it is straightforward to verify that

$$\begin{aligned} \log {\left( |1+\sqrt{y}z|^2+1\right) }= \log \left[ (1+a_{1}(y)z)(b_{1}(y)+\sqrt{y}z^{-1})\right] , \end{aligned}$$

where

$$\begin{aligned} a_{1}(y):=\frac{y+2-\sqrt{y^2+4}}{2\sqrt{y}}\in (0,1),~~~ b_{1}(y):=\frac{2y}{y+2-\sqrt{y^2+4}}=\frac{\sqrt{y}}{a_1(y)}\notin (0,1). \end{aligned}$$

Then, according to Proposition 2.10 in Yao et al. (2015) and Cauchy’s residue theorem, we have

$$\begin{aligned}&F^{y}\left( \log \left( x+1\right) \right) \nonumber \\&\quad =\int _{(1-\sqrt{y})^2}^{(1+\sqrt{y})^2}\frac{\log \left( x+1\right) }{2\pi xy}\sqrt{(x-(1-\sqrt{y})^2)((1+\sqrt{y})^2-x)} dx\nonumber \\&\quad =-\frac{1}{4\pi i} \oint _{|z|=1} \frac{\log \left( |1+\sqrt{y}z|^2+1\right) (1-z^2)^2}{z^2(1+\sqrt{y}z)(z+\sqrt{y})}dz\nonumber \\&\quad =-\frac{1}{4\pi i}\left[ \oint _{|z|=1} \frac{\log (1+a_{1}(y)z)(1-z^2)^2}{z^2(1+\sqrt{y}z)(z+\sqrt{y})}dz \right. \nonumber \\&\left. \qquad +\oint _{|z|=1}\frac{\log (b_{1}(y)+\sqrt{y}z)(z+1)^2(z-1)^2}{(z+\sqrt{y})\left( z+\frac{1}{\sqrt{y}}\right) \sqrt{y}z^2}dz\right] \nonumber \\&\quad =-\frac{1}{2}\Bigg [\frac{2 a_{1}(y)}{\sqrt{y}}+\frac{1-y}{y}\log \left( 1-a_{1}(y)\sqrt{y}\right) \nonumber \\&\qquad +\frac{1-y}{y}\log \left( \frac{\sqrt{y}}{a_{1}(y)}-y\right) -\frac{y+1}{y}\log \left( \frac{\sqrt{y}}{a_{1}(y)}\right) \Bigg ], \end{aligned}$$
(17)

where in the left integral of the third equality \(z=0\) and \(z=-\sqrt{y}\) are poles of order one, in the right integral of the third equality \(z=-\sqrt{y}\) is a pole of order one and \(z=0\) is a pole of order two. Note that \(-1/a_{1}(y)\) and \(-b_{1}(y)/\sqrt{y}\) are not in the unit circle and hence are not isolated singular points.

(2) When \(p/n\rightarrow y\in [1,+\infty )\), for the M-P law \(F^{y}(1/(x+1))\), utilizing Proposition 2.10 in Yao et al. (2015) again, we have

$$\begin{aligned} F^{y}\left( \frac{1}{1+x}\right)&=\int _{(1-\sqrt{y})^2}^{(1+\sqrt{y})^2}\frac{\frac{1}{1+x}}{2\pi xy}\sqrt{(x-(1-\sqrt{y})^2)((1+\sqrt{y})^2-x)} dx+\left( 1-\frac{1}{y}\right) \\&=-\frac{1}{4\pi i} \oint _{|z|=1} \frac{(1-z^2)^2}{\left( 1+|1+\sqrt{y}z|^2\right) z^2(1+\sqrt{y}z)(z+\sqrt{y})}dz+\left( 1-\frac{1}{y}\right) . \end{aligned}$$

Notice the term \(1-1/y\), which is an additional point mass at zero. In the case of \(y\in [1,\infty )\), by setting \(z\left( 1+|1+\sqrt{y}z|^2\right) \)=\(\sqrt{y}z^2+(y+2)z+\sqrt{y}=0\), the two roots are

$$\begin{aligned} y_1=\frac{-(y+2)+\sqrt{y^2+4}}{2\sqrt{y}}\in (-1,0),~~~ y_2=\frac{-(y+2)-\sqrt{y^2+4}}{2\sqrt{y}}\notin (-1,0). \end{aligned}$$

It turns out that by Cauchy’s residue theorem

$$\begin{aligned}&F^{y}\left( \frac{1}{1+x}\right) \nonumber \\&\quad =-\frac{1}{4\pi i} \oint _{|z|=1} \frac{(1-z^2)^2}{y(z-y_1)(z-y_2)z(z+\frac{1}{\sqrt{y}})(z+\sqrt{y})}dz+\left( 1-\frac{1}{y}\right) \nonumber \\&\quad =-\frac{1}{2}\left[ \frac{1}{y}+\frac{1-y}{y^2(y_1+\frac{1}{\sqrt{y}})(y_2+\sqrt{y})}+\frac{(1-y_1^2)^2}{y(y_1-y_2)y_1\left( y_1+\frac{1}{\sqrt{y}}\right) \left( y_1+\sqrt{y}\right) }\right] \nonumber \\&\qquad +\left( 1-\frac{1}{y}\right) , \end{aligned}$$
(18)

where in the contour integral \(z=0\), \(z=-1/\sqrt{y}\) and \(z=y_1\) are poles of order one.

The final step is to compute the M-P law of \(\log (x+1)\), according to Proposition 2.10 in Yao et al. (2015) and Cauchy’s residue theorem, we can show that

$$\begin{aligned}&F^{y}\left( \log (x+1)\right) \nonumber \\&\quad =\int _{(1-\sqrt{y})^2}^{(1+\sqrt{y})^2}\frac{\log \left( x+1\right) }{2\pi xy}\sqrt{(x-(1-\sqrt{y})^2)((1+\sqrt{y})^2-x)} dx\nonumber \\&\quad =-\frac{1}{4\pi i}\left[ \oint _{|z|=1} \frac{\log (1+a_1(y)z)(1-z^2)^2}{z^2(1+\sqrt{y}z)(z+\sqrt{y})}dz \right. \nonumber \\&\left. \qquad +\oint _{|z|=1}\frac{\log (b_1(y)+\sqrt{y}z)(z+1)^2(z-1)^2}{(z+\sqrt{y})\left( z+\frac{1}{\sqrt{y}}\right) \sqrt{y}z^2}dz\right] \nonumber \\&\quad =-\frac{1}{2}\Bigg [\frac{2 a_1(y)}{\sqrt{y}}+\frac{y-1}{y}\log \left( 1-\frac{a_1(y)}{\sqrt{y}}\right) \nonumber \\&\qquad +\frac{y-1}{y}\log \left( \frac{\sqrt{y}}{a_1(y)}-1\right) -\frac{y+1}{y}\log \left( \frac{\sqrt{y}}{a_1(y)}\right) \Bigg ]. \end{aligned}$$
(19)

It is worthy noting that when \(y=1\), the same conclusion also holds by direct evaluation. The proof is completed. \(\square \)

1.2 Proof of Theorem 1

Proof

Rewrite T as

$$\begin{aligned} T=\frac{|{{\mathbf {S}}}_n+\frac{{\text {tr}}({{\mathbf {S}}}_n)}{p}{{\mathbf {I}}}_p|^{\frac{n}{2}}}{\left( {\text {tr}}({{\mathbf {S}}}_n)\right) ^{\frac{np}{2}}} =\frac{|{{\mathbf {S}}}_n+{{\mathbf {I}}}_p|^{\frac{n}{2}}}{\left( {\text {tr}}({{\mathbf {S}}}_n)\right) ^{\frac{np}{2}}}\left| {{\mathbf {I}}}_p +\left( \frac{{\text {tr}}\left( {{\mathbf {S}}}_n\right) }{p}-1\right) \left( {{\mathbf {S}}}_n+{{\mathbf {I}}}_p\right) ^{-1}\right| ^{\frac{n}{2}}. \end{aligned}$$

It follows that

$$\begin{aligned} -\frac{2}{n}\log T=-\sum _{i=1}^p\log \left( l_i+1\right) +p\log \left( \sum _{i=1}^p l_i\right) -\sum _{i=1}^p\log \left( 1+\frac{\sum \nolimits _{i=1}^p \frac{l_i}{p}-1}{l_i+1}\right) . \end{aligned}$$

Define \(a=(1-\sqrt{y})^2\) and \(b=(1+\sqrt{y})^2\). Let \({\mathcal {U}}\) be an open set of the complex plane \({\mathbb {C}}\) containing \([\lim \inf _n\lambda _{\min }({\varvec{\varSigma }}_p)I_{(0,1)}(y)(1-\sqrt{y})^2,\lim \sup _n\lambda _{\max }({\varvec{\varSigma }}_p)(1+\sqrt{y})^2]\), and \({\mathcal {M}}\) be the set of analytic functions \(f: {\mathcal {U}} \rightarrow {\mathbb {R}}\). For any \(f \in {\mathcal {A}}\), consider the centralized LSS with form

$$\begin{aligned} G_n(f)=p\int _{-\infty }^{+\infty } f(x) d\left( F^{{{\mathbf {S}}}_n}(x)-F^{y_n,H_p}(x)\right) , \end{aligned}$$
(20)

where \(F^{{{\mathbf {S}}}_n}\) is the ESD of \({{\mathbf {S}}}_n\) and \(F^{y_n,H_p}\) is the finite-horizon proxy of LSD \(F^{y,H}\). Under Assumption 1–3, by Bai and Silverstein (2004) and Pan and Zhou (2008), \(G_n(f)\) converges weakly to a Gaussian distribution. When \({\varvec{\varSigma }}_p={{\mathbf {I}}}_p\), for convenience, denote \(F^{{{\mathbf {S}}}_n}\) by \(F_n\) and represent \(F^{y_n,H_p}\) as \(F^{y_n}\), the standard M-P law with index \(y_n\). Define \(g(x)=x\), it has been established in Wang and Yao (2013) that as \(y\in (0,\infty )\), \(G_n(g)={\text {tr}}({{\mathbf {S}}}_n)-p\Rightarrow N(0,(\kappa +\beta )y)\) under \(H_0\), where \(\Rightarrow \) stands for convergence in distribution. As a consequence,

$$\begin{aligned} p\log \left( \sum _{i=1}^p l_i\right)= & {} p\log \left( 1+\frac{1}{p}\left( \sum _{i=1}^p l_i-p\right) \right) +p\log p\nonumber \\= & {} \sum _{i=1}^p l_i-p+p\log p+{\mathcal {O}}_p\left( \frac{1}{p}\right) . \end{aligned}$$
(21)

Further define \(f_1(x)=1/(1+x)\), \(f_2(x)=1/(1+x)^2\). In the light of the convergence of \(G_n(f_1)\) and \(G_n(f_2)\), we have

$$\begin{aligned} G_n(f_1)\frac{{\text {tr}}({{\mathbf {S}}}_n)-p}{p}&=p\left\{ \frac{1}{p}\sum _{i=1}^p\frac{1}{1+l_i}-F^{y_n}\left( \frac{1}{1+x}\right) \right\} \frac{{\text {tr}}({{\mathbf {S}}}_n)-p}{p}=o_p\left( 1\right) ,\\ G_n(f_2)\left( \frac{{\text {tr}}({{\mathbf {S}}}_n)-p}{p}\right) ^2&=p\left\{ \frac{1}{p}\sum _{i=1}^p\frac{1}{(1+l_i)^2}-F^{y_n}\left( \frac{1}{(1+x)^2}\right) \right\} \frac{({\text {tr}}({{\mathbf {S}}}_n)-p)^2}{p^2}=o_p\left( 1\right) . \end{aligned}$$

Accordingly, using the Taylor expansion on \(\log (1+x)\), we derive that

$$\begin{aligned} \sum _{i=1}^p\log \left( 1+\frac{\frac{{\text {tr}}({{\mathbf {S}}}_n)}{p}-1}{l_i+1}\right)= & {} \sum _{i=1}^p \frac{\frac{{\text {tr}}({{\mathbf {S}}}_n)}{p}-1}{l_i+1}+{\mathcal {O}}_p\left( \sum _{i=1}^p\frac{\left( \frac{{\text {tr}}({{\mathbf {S}}}_n)}{p}-1\right) ^2}{(l_i+1)^2}\right) \nonumber \\\doteq & {} \left( {\text {tr}}({{\mathbf {S}}}_n)-p\right) F^{y_n}\left( \frac{1}{1+x}\right) , \end{aligned}$$
(22)

where “\(\doteq \)” means asymptotic equivalence up to \(o_p(1)\). Combining (21) and (22), we obtain

$$\begin{aligned} -\frac{2}{n}\log T\doteq \left( 1-F^{y_n}\left( \frac{1}{1+x}\right) \right) \left( \sum _{i=1}^p l_i-p\right) -\sum _{i=1}^p \log \left( l_i+1\right) +p\log p. \end{aligned}$$
(23)

Let \(u(x)=\log (x+1)\), \(h=\sqrt{y}\), next we work with the form \(\sum _{i=1}^p l_i\) and \(\sum _{i=1}^p \log \left( l_i+1\right) \). Firstly, decompose them as

$$\begin{aligned} \sum _{i=1}^{p}l_i&=p\int g(x) d\left( F_n(x)-F^{y_n}(x)\right) +pF^{y_n}(g)\triangleq X_n(g)+p,\\ \sum _{i=1}^p \log \left( l_i+1\right)&=p\int u(x) d\left( F_n(x)-F^{y_n}(x)\right) +pF^{y_n}(u)\triangleq X_n(u)+pF^{y_n}(u). \end{aligned}$$

Then by virtue of Proposition A.1 in Wang and Yao (2013), one can show that

$$\begin{aligned} \left( \begin{array}{cc} X_n(g) \\ X_n(u) \\ \end{array} \right) \Longrightarrow N\left( \left( \begin{array}{cc} \mathrm{E}X_{g} \\ \mathrm{E}X_{u} \\ \end{array} \right) , \ \left( \begin{array}{cc} \mathop {\text {Cov}}(X_g,X_g) &{} \mathop {\text {Cov}}(X_g, X_u) \\ \mathop {\text {Cov}}(X_u,X_g) &{} \mathop {\text {Cov}}(X_u,X_u) \end{array} \right) \ \right) , \end{aligned}$$

where

$$\begin{aligned} \mathrm{E}X_g&=0,\nonumber \\ \mathrm{E}X_u&=(\kappa -1) I_1(u)+\beta I_2(u) , \end{aligned}$$
(24)
$$\begin{aligned} \mathop {\text {Cov}}(X_g,X_g)&=(\kappa +\beta )y,\nonumber \\ \mathop {\text {Cov}}(X_g,X_u)&=\kappa J_1(g,u)+\beta J_2(g,u) , \end{aligned}$$
(25)
$$\begin{aligned} \mathop {\text {Cov}}(X_u,X_u)&=\kappa J_1(u,u)+\beta J_2(u,u) , \end{aligned}$$
(26)

with

$$\begin{aligned} I_1(u)&=\lim _{r\downarrow 1} I_1(u,r)=\lim _{r\downarrow 1}\left[ \frac{1}{2\pi i}\oint _{|\xi |=1}u(|1+h\xi |^{2})\left[ \frac{\xi }{\xi ^{2}-r^{-2}}-\frac{1}{\xi }\right] d\xi \right] , \\ I_2(u)&=\frac{1}{2\pi i}\oint _{|\xi |=1}u(|1+h\xi |^{2})\frac{1}{\xi ^{3}}d\xi , \\ J_1(g,u)&=\lim _{r\downarrow 1} J_1(g,u,r)=\lim _{r\downarrow 1}\left[ -\frac{1}{4\pi ^{2}}\oint _{|\xi _{1}|=1}\oint _{|\xi _{2}|=1} \frac{g(|1+h\xi _{1}|^{2})u(|1+h\xi _{2}|^{2})}{(\xi _{1}-r\xi _{2})^{2}}d\xi _{1}d\xi _{2}\right] ,\\ J_2(g,u)&=-\frac{1}{4\pi ^{2}}\oint _{|\xi _{1}|=1}\frac{g(|1+h\xi _{1}|^{2})}{\xi _{1}^{2}}d\xi _{1}\oint _{|\xi _{2}|=1}\frac{u(|1+h\xi _{2}|^{2})}{\xi _{2}^{2}}d\xi _{2}, \end{aligned}$$

where r is larger than 1 but close to 1, \(J_1(u,u)\) and \(J_2(u,u)\) are the same to \(J_1(g,u)\) and \(J_2(g,u)\) with g replaced by u. The contours in \(J_1\) are non overlapping and all contours are oriented counterclockwise.

Given this result, the remainder of the proof is to derive explicit expressions of the limiting parameters. Recall that on the unit circle \(|z|=1\), \((1+\sqrt{y}z)(1+\sqrt{y}z^{-1})=1+\sqrt{y}z^{-1}+\sqrt{y}z+y\). Moreover, as \(y\in (0,1)\), it is straightforward to verify that

$$\begin{aligned} \log {\left( |1+\sqrt{y}z|^2+1\right) }= \log \left[ (1+a_{1}(y)z)(b_{1}(y)+\sqrt{y}z^{-1})\right] , \end{aligned}$$

where

$$\begin{aligned} a_{1}(y):=\frac{y+2-\sqrt{y^2+4}}{2\sqrt{y}}\in (0,1),~~~ b_{1}(y):=\frac{2y}{y+2-\sqrt{y^2+4}}=\frac{\sqrt{y}}{a_1(y)}\notin (0,1). \end{aligned}$$

For (24), by Cauchy’s residue theorem,

$$\begin{aligned} I_{2}(u)&=\frac{1}{2\pi i}\oint _{|z|=1}\frac{\log \left[ (1+a_{1}(y)z)(b_{1}(y)+\sqrt{y}z^{-1})\right] }{z^3} dz\\&=\frac{1}{2\pi i}\left[ \oint _{|z|=1}\frac{\log (1+a_{1}(y)z)}{z^3}dz+\oint _{|z|=1}\frac{\log (b_{1}(y)+\sqrt{y}z^{-1})}{z^3}dz\right] \\&=-\frac{1}{2}a_{1}^{2}(y)+\oint _{|\xi |=1} \log (b_{1}(y)+\sqrt{y}\xi )\xi d\xi \\&=-\frac{1}{2}a_{1}^{2}(y), \end{aligned}$$

where in the left integral of the second equality \(z=0\) is a pole of order two, \(-1/a_{1}(y)\) and \(-b_{1}(y)/\sqrt{y}\) are not in the unit circle and hence are not isolated singular points.

$$\begin{aligned} I_{1}(u,r)&=\frac{1}{2\pi i}\oint _{|\xi |=1}\log \left[ (1+a_{1}(y)\xi )(b_{1}(y)+\sqrt{y} \xi ^{-1})\right] \left[ \frac{\xi }{\xi ^2-r^{-2}}-\frac{1}{\xi }\right] d\xi \\&=\frac{1}{2\pi i}\Biggl [\oint _{|\xi |=1} \frac{\log (1+a_{1}(y)\xi )}{\xi ^{2}-r^{-2}}\cdot \xi d\xi +\oint _{|\xi |=1} \frac{\log (b_{1}(y)+\sqrt{y}{\xi }^{-1})}{\xi ^{2}-r^{-2}}\cdot \xi d\xi \\&\quad -\oint _{|\xi |=1}\frac{\log (b_{1}(y)+\sqrt{y}{\xi }^{-1})}{\xi } d\xi \Biggl ], \end{aligned}$$

where

$$\begin{aligned} \frac{1}{2\pi i}\oint _{|\xi |=1} \frac{\log (1+a_{1}(y)\xi )}{\xi ^{2}-r^{-2}}\cdot \xi d\xi&=\frac{1}{2}\log \left( 1+a_{1}(y)\frac{1}{r}\right) +\frac{1}{2}\log \left( 1-a_{1}(y)\frac{1}{r}\right) \\&=\frac{1}{2}\log \left( 1-\frac{a_{1}^{2}(y)}{r^2}\right) , \end{aligned}$$

and via the change of variable \(z=1/\xi ,\)

$$\begin{aligned} \frac{1}{2\pi i}\oint _{|\xi |=1} \frac{\log (b_{1}(y)+\sqrt{y}{\xi }^{-1})}{\xi ^{2}-r^{-2}}\cdot \xi d\xi&=-\frac{1}{2\pi i}\oint _{|z|=1}\frac{\log (b_{1}(y)+\sqrt{y}z)}{z\cdot r^{-2}(z^{2}-r^{2})} dz\\&=\log (b_{1}(y)),\\ \frac{1}{2\pi i}\oint _{|\xi |=1} \frac{\log (b_{1}(y)+\sqrt{y}\xi ^{-1})}{\xi }d\xi&=\frac{1}{2\pi i}\oint _{|z|=1}\frac{\log (b_{1}(y)+\sqrt{y}z)}{z}dz\\&=\log (b_{1}(y)). \end{aligned}$$

As a consequence,

$$\begin{aligned} I_{1}(u,r)&=\frac{1}{2}\log \left( 1-\frac{1}{r^2}a_{1}^2(y)\right) ,\\ \mathrm{E}X_u=(\kappa -1) I_1(u)+\beta I_2(u)&=(\kappa -1)\left( \frac{1}{2}\log (1-a_{1}^2(y))\right) +\beta \left( -\frac{1}{2}a^2_{1}(y)\right) . \end{aligned}$$

For (25), compute \(J_1(g,u,r)\) and \(J_2(g,u)\) as

$$\begin{aligned} J_1(g,u,r)&=-\frac{1}{4 \pi ^2} \oint _{|\xi _1|=1}\oint _{|\xi _2|=1} \frac{g\left( |1+h\xi _1|^2\right) \cdot u\left( |1+h \xi _2|^2\right) }{(\xi _1-r\xi _2)^2} d\xi _1 d\xi _2\\&=-\frac{1}{4 \pi ^2} \oint _{|\xi _2|=1} \left[ \oint _{|\xi _1|=1} \frac{(1+h\xi _1)(\xi _1+h)}{(\xi _1-r\xi _2)^2\xi _1} d\xi _1\right] \log \left( |1+h\xi _2|^2+1\right) \\&\qquad d\xi _2~~(|r\xi _2|>1)\\&=\frac{1}{2\pi i}\oint _{|\xi _2|=1}\frac{\log \left[ (1+a_{1}(y)\xi _2)(b_{1}(y)+\sqrt{y}\xi _2^{-1})\right] }{r^2\xi _2^2} \cdot h d\xi _2\\&=\frac{h}{r^2}\frac{1}{2\pi i} \oint _{|\xi _2|=1} \left[ \frac{\log (1+a_{1}(y)\xi _2)}{\xi _2^2}+\frac{\log (b_{1}(y)+\sqrt{y}\xi _2^{-1})}{\xi _2^2}\right] d\xi _2\\&=\frac{h}{r^2} a_{1}(y),\\ J_2(g,u)&=-\frac{1}{4\pi ^2}\oint _{|\xi _1|=1} \frac{|1+h\xi _1|^2}{\xi _1^2}d\xi _1 \\&\qquad \cdot \oint _{|\xi _2|=1}\frac{\log (1+a_{1}(y)\xi _2)+\log (b_{1}(y)+\sqrt{y}\xi _2^{-1})}{\xi _2^2} d\xi _2\\&=-\frac{1}{4 \pi ^2} \oint _{|\xi _1|=1} \frac{(1+h\xi _1)(\xi _1+h)}{\xi _1^3}d\xi _1 \cdot 2\pi i\cdot a_{1}(y)\\&=a_{1}(y)h. \end{aligned}$$

As a result,

$$\begin{aligned} \mathrm{Cov}(X_g,X_u)=\kappa \sqrt{y} a_{1}(y)+\beta \sqrt{y} a_{1}(y). \end{aligned}$$

For (26), \(\mathrm{Cov}(X_u,X_u)=\kappa \lim \limits _{r \downarrow 1}J_1(u,u,r)+\beta J_2(u,u)\),

$$\begin{aligned} J_1(u,u,r)&=-\frac{1}{4 \pi ^2}\oint _{|\xi _2|=1}\underbrace{\left[ \oint _{|\xi _1|=1}\frac{\log \left[ (1+a_{1}(y)\xi _1)(b_{1}(y)+\sqrt{y}\xi _1^{-1})\right] }{(\xi _1-r\xi _2)^2}d\xi _1\right] }_{(\text {i})}\\&\quad \cdot \log \left[ (1+a_{1}(y)\xi _2)(b_{1}(y)+\sqrt{y}\xi _2^{-1})\right] d\xi _2, \end{aligned}$$

Compute \((\text {i})\) as

$$\begin{aligned} (\text {i})&=\oint _{|\xi _1|=1}\frac{\log (1+a_{1}(y)\xi _1)}{(\xi _1-r\xi _2)^2}d\xi _1+\oint _{|z|=1} \frac{\log (b_{1}(y)+\sqrt{y}z)}{\left( r\xi _2\right) ^2\left( \frac{1}{r\xi _2}-z\right) ^2}dz\\&= \frac{2 \pi i\sqrt{y}}{r\xi _2(r\xi _2\cdot b_1(y)+\sqrt{y})}. \end{aligned}$$

Therefore,

$$\begin{aligned} J_1(u,u,r)&=\frac{\sqrt{y}}{2\pi i}\oint _{|\xi _2|=1}\frac{\log (1+a_{1}(y)\xi _2)+\log (b_{1}(y)+\sqrt{y}\xi ^{-1}_2)}{r\xi _2\cdot (r\xi _2\cdot b_{1}(y)+\sqrt{y})}d\xi _2\\&=\frac{\sqrt{y}}{2\pi i}\oint _{|z|=1} \frac{\log (1+a_{1}(y)z)}{rz(rb_{1}(y)z+\sqrt{y})}dz+\frac{\sqrt{y}}{2\pi i}\oint _{|z|=1}\frac{\log (b_{1}(y)+\sqrt{y}z)}{r\frac{1}{z}(r\frac{1}{z}b_{1}(y)+\sqrt{y})z^2}dz\\&=-\frac{\log \left( 1-\frac{\sqrt{y}}{r}\frac{a_{1}(y)}{b_{1}(y)}\right) }{r}, \end{aligned}$$

where in the left integral of the second equation \(z=0\) is a removable isolated singularity and \(z=-\sqrt{y}/(r b_{1}(y))\) is a pole of order one. Since \(|-rb_{1}(y)/\sqrt{y}|>1\), the right integral is zero. On the other hand,

$$\begin{aligned} J_2(u,u)&=-\frac{1}{4\pi ^2}\oint _{|\xi _1|=1}\frac{\log (1+a_{1}(y)\xi _1)+\log (b_{1}(y)+\sqrt{y}\xi _1^{-1})}{\xi _1^2}d\xi _1\\&\quad \cdot \oint _{|\xi _2|=1}\frac{\log (1+a_{1}(y)\xi _2)+\log (b_{1}(y)+\sqrt{y}\xi _2^{-1})}{\xi _2^2}d\xi _2\\&=a_{1}^2(y). \end{aligned}$$

We see then that

$$\begin{aligned} \mathrm{Cov}(X_u,X_u) =\kappa \left( -\log \left( 1-\sqrt{y}\frac{a_{1}(y)}{b_{1}(y)}\right) \right) +\beta a^2_{1}(y). \end{aligned}$$

Collecting the above results yields

$$\begin{aligned} \begin{aligned} \mathrm{E}X_u&=(\kappa -1)\left( \frac{1}{2}\log (1-a_1^2(y))\right) +\beta \left( -\frac{1}{2}a^2_1(y)\right) ,\\ \mathrm{Cov}(X_g,X_g)&=(\kappa +\beta )y,\\ \mathrm{Cov}(X_g,X_u)&=\kappa \sqrt{y} a_1(y)+\beta \sqrt{y} a_1(y),\\ \mathrm{Cov}(X_u,X_u)&=\kappa \left( -\log \left( 1-\sqrt{y}\frac{a_1(y)}{b_1(y)}\right) \right) +\beta a^2_1(y). \end{aligned} \end{aligned}$$
(27)

Thus, by the delta method we deduce that

$$\begin{aligned} \left( 1-F^{y_n}\left( \frac{1}{1+x}\right) \right) \left( \sum _{i=1}^p l_i-p\right) -\sum _{i=1}^p \log \left( l_i+1\right) +p F^{y_n}\left( \log (x+1)\right) \Rightarrow N(\mu ,V), \end{aligned}$$
(28)

where

$$\begin{aligned} \mu&=-(\kappa -1)\left( \frac{1}{2}\log \left( 1-a_{1}^2(y)\right) \right) -\beta \left( -\frac{1}{2}a^2_{1}(y)\right) ,\\ V&=\left( 1-F^y\left( \frac{1}{1+x}\right) \right) ^2\left( \kappa +\beta \right) y-2\left( 1-F^y\left( \frac{1}{1+x}\right) \right) \left( \kappa \sqrt{y}a_{1}(y)+\beta \sqrt{y}a_{1}(y)\right) \\&\quad +\kappa \left( -\log \left( 1-a_1^2(y)\right) \right) +\beta a_1^2(y). \end{aligned}$$

Finally by (23) and (28) we get the desired result that

$$\begin{aligned} -\frac{2}{n}\log T+p F^{y_n}\left( \log (x+1)\right) -p\log p \Rightarrow N(\mu ,V), \end{aligned}$$

where \(F^{y_n}(\log (x+1))\) is given in (17) with y replaced by \(y_n\) and \(F^{y}(1/(1+x))\) is given in (16). The proof is complete. \(\square \)

1.3 Proof of theorem 2

Proof

The proof of Theorem 2 mirrors that of Theorem 1. But, the expression of M-P law and the determination of poles in contour integrals are different when \(y\in [1,+\infty )\). Firstly, an argument similar to the one used in Theorem 1 reveals that (23) remains valid as \(y\ge 1\), which is

$$\begin{aligned} -\frac{2}{n}\log T\doteq \left( 1-F^{y_n}\left( \frac{1}{1+x}\right) \right) \left( \sum _{i=1}^p l_i-p\right) -\sum _{i=1}^p \log \left( l_i+1\right) +p\log p. \end{aligned}$$

To establish the asymptotic normality of ELRT, it remains to derive the limiting parameters as shown in (24), (25) and (26). To save space, we omit the procedure and just present the results below.

$$\begin{aligned} \mathrm{E}X_u&=(\kappa -1)\left( \frac{1}{2}\log (1-a_1^2(y))\right) +\beta \left( -\frac{1}{2}a^2_1(y)\right) ,\\ \mathrm{Cov}(X_g,X_g)&=(\kappa +\beta )y,\\ \mathrm{Cov}(X_g,X_u)&=\kappa \sqrt{y} a_1(y)+\beta \sqrt{y} a_1(y),\\ \mathrm{Cov}(X_u,X_u)&=\kappa \left( -\log \left( 1-\sqrt{y}\frac{a_1(y)}{b_1(y)}\right) \right) +\beta a^2_1(y). \end{aligned}$$

Coincidentally, the limiting parameters possess the same forms as those in Theorem 1. As a consequence, by the delta method we draw the conclusion that

$$\begin{aligned} \left( 1-F^{y_n}\left( \frac{1}{1+x}\right) \right) \left( \sum _{i=1}^p l_i-p\right) -\sum _{i=1}^p \log \left( l_i+1\right) +p F^{y_n}\left( \log (x+1)\right) \Rightarrow N(\mu ,V), \end{aligned}$$
(29)

where

$$\begin{aligned} \mu&=-(\kappa -1)\left( \frac{1}{2}\log \left( 1-a_{1}^2(y)\right) \right) -\beta \left( -\frac{1}{2}a^2_{1}(y)\right) ,\\ V&=\left( 1-F^y\left( \frac{1}{1+x}\right) \right) ^2\left( \kappa +\beta \right) y-2\left( 1-F^y\left( \frac{1}{1+x}\right) \right) \left( \kappa \sqrt{y}a_{1}(y)+\beta \sqrt{y}a_{1}(y)\right) \\&\quad +\kappa \left( -\log \left( 1-a_1^2(y)\right) \right) +\beta a_1^2(y). \end{aligned}$$

Finally by (23) and (29) we obtain the desired result that

$$\begin{aligned} -\frac{2}{n}\log T+p F^{y_n}\left( \log (x+1)\right) -p\log p \Rightarrow N(\mu ,V), \end{aligned}$$

where \(F^{y_n}(\log (x+1))\) is given in (19) with y replaced by \(y_n\) and \(F^{y}(1/(1+x))\) is given in (18). The proof is complete. \(\square \)

1.4 Proof of Theorem 4

Proof

For the spiked population model (10), we know \({\text {tr}}\left( {\varvec{\varSigma }}_p\right) /p=(p-M+\sum _{i=1}^k n_i a_i)/p \rightarrow 1\), as \(p\rightarrow \infty \). Rewrite T as

$$\begin{aligned} T&=\frac{\left| {{\mathbf {S}}}_n+\frac{{\text {tr}}({{\mathbf {S}}}_n)}{p}{{\mathbf {I}}}_p\right| ^{\frac{n}{2}}}{\left( {\text {tr}}({{\mathbf {S}}}_n)\right) ^{\frac{np}{2}}} =\frac{\left| {{\mathbf {S}}}_n+\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}{{\mathbf {I}}}_p\right| ^{\frac{n}{2}}}{\left( {\text {tr}}({{\mathbf {S}}}_n)\right) ^{\frac{np}{2}}} \left| {{\mathbf {I}}}_p \right. \\&\left. \quad +\left( \frac{{\text {tr}}\left( {{\mathbf {S}}}_n\right) }{p}-\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}\right) \left( {{\mathbf {S}}}_n+\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}{{\mathbf {I}}}_p\right) ^{-1}\right| ^{\frac{n}{2}}, \end{aligned}$$

which implies

$$\begin{aligned} -\frac{2}{n}\log T&=-\sum _{i=1}^p \log \left( l_i+\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}\right) -\sum _{i=1}^p \log \left( 1+\frac{\frac{{\text {tr}}\left( {{\mathbf {S}}}_n\right) }{p}-\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}}{l_i+\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}}\right) \\&\quad +p\log \left( \sum _{i=1}^p l_i\right) . \end{aligned}$$

By Lemma 2 in Tian et al. (2015), for general diagonal alternatives satisfying Assumption 3, as \(y \in (0,\infty )\), \({\text {tr}}\left( {{\mathbf {S}}}_n\right) -{\text {tr}}\left( {\varvec{\varSigma }}_p\right) ={\mathcal {O}}_p(1)\). As a result,

$$\begin{aligned} \begin{aligned} p\log \left( \sum _{i=1}^p l_i\right)&=p\log \left( 1+\frac{\sum \limits _{i=1}^p l_i-{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }\right) +p\log \left( {\text {tr}}\left( {\varvec{\varSigma }}_p\right) \right) \\&\doteq \sum _{i=1}^p l_i-{\text {tr}}\left( {\varvec{\varSigma }}_p\right) +p\log \left( {\text {tr}}\left( {\varvec{\varSigma }}_p\right) \right) . \end{aligned} \end{aligned}$$
(30)

Set \({\text {tr}}\left( {\varvec{\varSigma }}_p\right) /p=1/b\), define \(f_3(x)=1/(x+1/b)\) and \(f_4(x)=1/(x+1/b)^2\). Reconsider the centralized LSS in (20), by Pan and Zhou (2008) we derive that

$$\begin{aligned}&G_n(f_3)\frac{{\text {tr}}({{\mathbf {S}}}_n)-{\text {tr}}({\varvec{\varSigma }}_p)}{p} \\&\quad =p\left\{ \frac{1}{p}\sum _{i=1}^p\frac{1}{l_i+\frac{1}{b}}-F^{y_n,H_p}\left( \frac{1}{x+\frac{1}{b}}\right) \right\} \frac{{\text {tr}}({{\mathbf {S}}}_n)-{\text {tr}}({\varvec{\varSigma }}_p)}{p}=o_p\left( 1\right) ,\\&G_n(f_4)\left( \frac{{\text {tr}}({{\mathbf {S}}}_n)-{\text {tr}}({\varvec{\varSigma }}_p)}{p}\right) ^2 \\&\quad =p\left\{ \frac{1}{p}\sum _{i=1}^p\frac{1}{(l_i+\frac{1}{b})^2}-F^{y_n,H_p}\left( \frac{1}{(x+\frac{1}{b})^2}\right) \right\} \frac{({\text {tr}}({{\mathbf {S}}}_n)-{\text {tr}}({\varvec{\varSigma }}_p))^2}{p^2}=o_p\left( 1\right) . \end{aligned}$$

Using the Taylor expansion on \(\log (1+x)\), we obtain

$$\begin{aligned} \begin{aligned} \sum _{i=1}^p\log \left( 1+\frac{\frac{{\text {tr}}\left( {{\mathbf {S}}}_n\right) }{p}-\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}}{l_i+\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}}\right)&=\sum _{i=1}^p \frac{\frac{{\text {tr}}\left( {{\mathbf {S}}}_n\right) }{p}-\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}}{l_i+\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}}+{\mathcal {O}}_p\left( \sum _{i=1}^p\frac{\left( \frac{{\text {tr}}\left( {{\mathbf {S}}}_n\right) }{p}-\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}\right) ^2}{\left( l_i+\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}\right) ^2}\right) \\&\doteq \left( {\text {tr}}({{\mathbf {S}}}_n)-{\text {tr}}({\varvec{\varSigma }}_p)\right) F^{y_n,H_p}\left( \frac{1}{x+\frac{{\text {tr}}({\varvec{\varSigma }}_p)}{p}}\right) . \end{aligned} \end{aligned}$$
(31)

In the same way one can show that

$$\begin{aligned} \sum _{i=1}^p \log \left( l_i+\frac{{\text {tr}}({\varvec{\varSigma }}_p)}{p}\right) \doteq \sum _{i=1}^p \log \left( l_i+1\right) +({\text {tr}}({\varvec{\varSigma }}_p)-p)F^{y_n,H_p}\left( \frac{1}{x+1}\right) . \end{aligned}$$
(32)

Putting (30), (31) and (32) together yields

$$\begin{aligned}&-\frac{2}{n}\log T \nonumber \\&\quad \doteq \left( 1-F^{y_n,H_p}\left( \frac{1}{x+\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}}\right) \right) \sum _{i=1}^p l_i-\sum _{i=1}^p \log \left( l_i+1\right) -\left( {\text {tr}}\left( {\varvec{\varSigma }}_p\right) -p\right) \nonumber \\&\quad \qquad \cdot F^{y_n,H_p}\left( \frac{1}{x+1}\right) +p\log \left( {\text {tr}}({\varvec{\varSigma }}_p)\right) +{\text {tr}}\left( {\varvec{\varSigma }}_p\right) F^{y_n,H_p}\left( \frac{1}{x+\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}}\right) -{\text {tr}}\left( {\varvec{\varSigma }}_p\right) . \end{aligned}$$
(33)

Next we proceed to investigate the asymptotic behavior of (33). Based on the discussion in the opening of Sect. 4, we can conclude that for the spiked population model (10),

$$\begin{aligned}&\left( \begin{array}{ll} \sum \nolimits _{i=1}^p l_i-pF^{y_n,H_p}(x) \\ \sum \nolimits _{i=1}^p\log (l_i+1)-pF^{y_n,H_p}\left( \log (x+1)\right) \\ \end{array} \right) \\&\quad \Longrightarrow N\left( \left( \begin{array}{cc} \mathrm{E}X_{g} \\ \mathrm{E}X_{u} \\ \end{array} \right) , \ \left( \begin{array}{cc} \mathop {\text {Cov}}(X_g,X_g) &{} \mathop {\text {Cov}}(X_g, X_u) \\ \mathop {\text {Cov}}(X_u,X_g) &{} \mathop {\text {Cov}}(X_u,X_u) \end{array} \right) \ \right) , \end{aligned}$$

where the six parameters in the normal distribution are identical to those in Theorem 1. By directing invoking the delta method, we are led to the conclusion that

$$\begin{aligned}&-\frac{2}{n}\log T+\left( {\text {tr}}({\varvec{\varSigma }}_p)-pF^{y_n,H_p}(x)\right) \left( 1-F^{y_n,H_p}\left( \frac{1}{x+\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}}\right) \right) +\left( {\text {tr}}({\varvec{\varSigma }}_p)-p\right) \nonumber \\&\qquad \cdot F^{y_n,H_p}\left( \frac{1}{x+1}\right) +p F^{y_n,H_p}\left( \log (x+1)\right) -p\log \left( {\text {tr}}\left( {\varvec{\varSigma }}_p\right) \right) \Rightarrow N(\mu ,V), \end{aligned}$$
(34)

where \(\mu \) and V are given in (28). To finish the proof, it suffices to derive the detailed expression of \(F^{y_n,H_p}(x)\), \(F^{y_n,H_p}(1/(x+1/b))\), \(F^{y_n,H_p}(1/(x+1))\) and \(F^{y_n,H_p}(\log (x+1))\) according to the asymptotic expansion in Theorem 3.

Firstly, it is known in Wang et al. (2014) that

$$\begin{aligned} F^{y_n,H_p}(x)=1+\frac{1}{p}\sum _{i=1}^k n_i a_i-\frac{M}{p}+{\mathcal {O}}\left( \frac{1}{n^2}\right) . \end{aligned}$$
(35)

For \(u(x)=\log \left( x+1\right) \), when \(0<y_n<1\), write

$$\begin{aligned} u\left( -\frac{1}{m}+\frac{y_n}{1+m}\right)&=\log \left( \frac{m^2+y_n m-1}{m(1+m)}\right) =\log \left( \frac{(m-m_1)(m-m_2)}{m(1+m)}\right) , \end{aligned}$$

where

$$\begin{aligned} m_1=\frac{-y_n+\sqrt{y_n^2+4}}{2},~~~ m_2=\frac{-y_n-\sqrt{y_n^2+4}}{2}. \end{aligned}$$

Set \({\widetilde{f}}(m)=m^2+y_n m-1\), it is simple to check that \({\widetilde{f}}\left( -1/\left( 1-\sqrt{y_n}\right) \right) >0\) and \({\widetilde{f}}(-1/(1+\sqrt{y_n}))<0\), indicating that \(m_2\) is included in the integral region of (11) and (12). Also notice that \(-1/a_i \in \left[ -1/(1-\sqrt{y_n}),-1/(1+\sqrt{y_n})\right] \) when \(i \in \{k_1+1, \ldots , k\}\). Therefore the potential poles are \(\{m=-1\},~\{m=-1/a_i,~i=k_1+1,\ldots , k\}\) and \(\{m=m_2\}\) when calculating the contour integrals in Theorem 3. Since \({\widetilde{f}}(-1)=-y_n<0\) and the \(M-k_1\) close spikes satisfy \(1<a_i\le 1+\sqrt{y_n}\) for \(i \in \{k_1+1, \ldots , k\}\), the three poles are distinct which eliminates the possibility of repeatedly calculating the poles.

$$\begin{aligned} (11)&=-\frac{1}{2\pi i p}\oint _{{\mathcal {C}}_{1}}\left( \log \left( \frac{m-m_1}{m }\right) +\log \left( \frac{m-m_2}{1+m}\right) \right) \left( \frac{M}{y_n m}-\sum _{i=1}^{k}\frac{n_i a_i^2 m}{(1+a_i m)^2}\right) dm\\&=\frac{1}{2 \pi i p}\oint _{{\mathcal {C}}_1} \log \left( \frac{m-m_1}{m}\right) \sum _{i=1}^k \frac{n_i a_i^2 m}{(1+a_i m)^2} dm-\frac{1}{2 \pi i p}\oint _{{\mathcal {C}}_1}\log \left( \frac{m-m_2}{1+m}\right) \frac{M}{m y_n}dm\\&\quad +\frac{1}{2\pi i p}\oint _{{\mathcal {C}}_1}\log \left( \frac{m-m_2}{1+m}\right) \sum _{i=1}^{k}\frac{n_i a_i^2 m}{(1+a_i m)^2} dm \triangleq A-B+C, \\ A&=\frac{1}{p}\sum _{i=k_1+1}^{k}n_i \cdot \frac{\partial \log \left( \frac{m-m_1}{m}\right) m}{\partial m}\Biggl |_{m=-\frac{1}{a_i}}=\sum _{i=k_1+1}^{k}\frac{n_i}{p}\left( \frac{-m_1 a_i}{m_1 a_i+1}+\log \left( 1+m_1 a_i\right) \right) . \end{aligned}$$
Fig. 4
figure 4

The new contour 1

To calculate B, plot a new contour as given in Fig. 4. Besides the original contour \({\mathcal {C}}_1\), \(\widetilde{{\mathcal {C}}_1}\) is a circle with radius \(\epsilon \) and \({\mathcal {C}}_r\) is a circle with radius a sufficiently large number r. By taking the straight line segment joining \(m_2\) and \(-1\) as the branch cut, the complex valued function \(\log \left( (m-m_2)/(m+1)\right) \) is analytic in the new contour Fig. 4 with contour integral equal to zero. Note that the integral in \(l_1\) and \(l_2\) could cancel each other out. Furthermore, by Cauchy’s residue theorem and the parametrization \(m=r e^{i \theta }\) we get

$$\begin{aligned} \frac{1}{2 \pi i}\oint _{\widetilde{{\mathcal {C}}}_1}\log \left( \frac{m-m_2}{m+1}\right) \frac{1}{m}dm&=\log (-m_2),\\ \frac{1}{2 \pi i} \oint _{{\mathcal {C}}_r} \log \left( \frac{m-m_2}{m+1}\right) \frac{1}{m} dm&=-\frac{1}{2 \pi }\int _{0}^{2 \pi } \log \left( \frac{m-m_2}{m+1}\right) d\theta \xrightarrow {r\rightarrow \infty }0, \end{aligned}$$

which gives rise to

$$\begin{aligned} B=-\frac{M}{p y_n}\log (-m_2). \end{aligned}$$

As for C,

$$\begin{aligned} C&=\frac{1}{2 \pi i p} \oint _{{\mathcal {C}}_1} \log \left( \frac{m-m_2}{1+m}\right) \sum _{i=1}^{k} \frac{n_i m}{\left( m+\frac{1}{a_i}\right) ^2} dm\\&=\frac{1}{2 \pi i p} \oint _{{\mathcal {C}}_1} \log \left( \frac{m-m_2}{1+m}\right) \sum _{i=1}^{k_1} \frac{n_i m}{\left( m+\frac{1}{a_i}\right) ^2} dm \\&\quad + \frac{1}{2 \pi i p} \oint _{{\mathcal {C}}_1} \log \left( \frac{m-m_2}{1+m}\right) \sum _{i=k_1+1}^{k} \frac{n_i m}{\left( m+\frac{1}{a_i}\right) ^2} dm, \end{aligned}$$

Following the same strategy for analyzing B, consider the contour in Fig. 4 but suitably plot \(\widetilde{{\mathcal {C}}}_1\) to make it include all \(-1/a_i~(i=1,\ldots ,k_1)\) and plot \({\mathcal {C}}_1\) to make it include all \(-1/a_i~(i=k_1+1,\ldots ,k)\). This is theoretically possible because the first \(k_1\) spikes \(a_i\)’s are not included in \({\mathcal {C}}_1\). As a consequence, the right integral of C is zero. For the left side, its integral value on \({\mathcal {C}}_r\) tends to zero as \(r\rightarrow \infty \). By Cauchy’s residue theorem

$$\begin{aligned} C&=-\frac{1}{2 \pi i p} \oint _{\widetilde{{\mathcal {C}}}_1} \log \left( \frac{m-m_2}{1+m}\right) \sum _{i=1}^{k_1} \frac{n_i m}{\left( m+\frac{1}{a_i}\right) ^2} dm\\&=\sum _{i=1}^{k_1} \frac{n_i}{p} \log \left( \frac{1-a_i}{1+m_2 a_i}\right) -\sum _{i=1}^{k_1} \frac{n_i}{p} \frac{(1+m_2)a_i}{(1+m_2 a_i)(a_i-1)}. \end{aligned}$$

Summarizing A, B and C we have

$$\begin{aligned} (11)&=\sum _{i=k_1+1}^{k}\frac{n_i}{p}\left( \frac{-m_1 a_i}{m_1 a_i+1}+\log \left( 1+m_1 a_i\right) \right) +\sum _{i=1}^{k}\frac{n_i}{p}\frac{\log (-m_2)}{y_n}\\&\quad +\sum _{i=1}^{k_1}\frac{n_i}{p}\log \left( \frac{1-a_i}{1+m_2 a_i}\right) \\&\quad -\sum _{i=1}^{k_1}\frac{n_i}{p}\frac{(1+m_2)a_i}{(1+a_i m_2)(a_i-1)}. \end{aligned}$$

Next we deal with the term (12), by direct computation it can be shown that

$$\begin{aligned} (12)&=-\frac{1}{2 \pi i p}\oint _{{\mathcal {C}}_1}\frac{m(1+m)}{(m-m_1)(m-m_2)}\sum _{i=1}^{k}\left( \frac{n_i a_i}{1+a_i m}-\frac{n_i}{1+m}\right) \left( \frac{1}{m}-\frac{y_n m}{(1+m)^2}\right) dm\\&=-\frac{1}{2 \pi i p}\sum _{i=1}^{k}\oint _{{\mathcal {C}}_1}\frac{n_i a_i (1+m) }{(m-m_1)(m-m_2)(1+a_i m)}dm \\&\quad +\frac{1}{2 \pi i p}\sum _{i=1}^{k}\oint _{{\mathcal {C}}_1} \frac{a_i y_n n_i m^2}{(1+a_i m)(1+m)(m-m_1)(m-m_2)}dm\\&\quad +\frac{1}{2 \pi i p}\sum _{i=1}^{k}\oint _{{\mathcal {C}}_1}\frac{n_i }{(m-m_1)(m-m_2)}dm \\&\quad -\frac{1}{2 \pi i p}\sum _{i=1}^{k}\oint _{{\mathcal {C}}_1}\frac{n_i m^2 y_n}{(m-m_1)(m-m_2)(1+m)^2}dm\\&\triangleq D+E+F+G, \end{aligned}$$

where

$$\begin{aligned} D&=-\sum _{i=1}^{k}\frac{n_i}{p}\frac{(m_2+1) a_i}{(m_2-m_1)(1+a_i m_2)}+\frac{1}{p}\sum _{i=k_1+1}^{k}\frac{n_i a_i (1-a_i)}{(1+m_1 a_i)(1+m_2 a_i)},\\ E&=\frac{1}{p}\sum _{i=1}^{k}\frac{n_i a_i y_n}{(m_2-m_1)}\frac{m_2^2}{(1+a_i m_2)(1+m_2)}+\frac{1}{p}\sum _{i=1}^{k}\frac{n_i a_i y_n}{(1+m_1)(1+m_2)(1-a_i)}\\&\quad +\frac{1}{p}\sum _{i=k_1+1}^{k}\frac{n_i y_n a_i}{(1+m_1 a_i)(1+m_2 a_i)(a_i-1)},\\ F&=\frac{1}{p}\sum _{i=1}^{k}\frac{n_i }{m_2-m_1},\\ G&=-\frac{1}{p}\sum _{i=1}^{k}\frac{n_i m_2^2 y_n}{(m_2-m_1)(1+m_2)^2}-\frac{1}{p}\sum _{i=1}^{k}\frac{n_i y_n(y_n+2)}{(1+m_1)^2(1+m_2)^2}. \end{aligned}$$

Notice that \(m_1 m_2=-1\) and \(m_1+m_2=-y_n\), by which the sum \(D+E+F+G\) reduces to

$$\begin{aligned} (12)&=\sum _{i=1}^k \frac{n_i}{p}\frac{a_i y_n m_2^2-a_i(1+m_2)^2}{(m_2-m_1)(1+a_i m_2)(1+m_2)}+\sum _{i=1}^k \frac{n_i}{p}\frac{(1+m_2)^2-m_2^2 y_n}{(m_2-m_1)(1+m_2)^2}\\&\quad +\sum _{i=k_1+1}^k \frac{n_i}{p}\frac{a_i (y_n-(1-a_i)^2)}{(1+m_1 a_i)(1+m_2 a_i)(a_i-1)}+\sum _{i=1}^k \frac{n_i}{p}\frac{y_n(2a_i-2-y_n)}{(1+m_1)^2(1+m_2)^2(1-a_i)}. \end{aligned}$$

As for (13),

$$\begin{aligned} (13)&=\left( 1-\frac{M}{p}\right) F^{y_n}\left( \log \left( x+1\right) \right) +\frac{1}{p}\sum _{i=1}^{k_1} n_i \log \left( a_i+\frac{y_n a_i}{a_i-1}+1\right) +{\mathcal {O}}\left( \frac{1}{n^2}\right) ,\\&=\left( 1-\frac{M}{p}\right) F^{y_n}\left( \log \left( x+1\right) \right) +\frac{1}{p}\sum _{i=1}^{k_1} n_i \log \left( \frac{(1+m_1 a_i)(1+m_2 a_i)}{1-a_i}\right) +{\mathcal {O}}\left( \frac{1}{n^2}\right) , \end{aligned}$$

where \(F^{y_n}\left( \log \left( x+1\right) \right) \) has been figured out in Theorem 1. Combining the above results we derive that when \(y\in (0,1)\),

$$\begin{aligned}&F^{y_n,H_p}\left( \log \left( x+1\right) \right) \nonumber \\&\quad =\left( 1-\frac{M}{p}\right) F^{y_n}\left( \log \left( x+1\right) \right) +\sum _{i=1}^{k}\frac{n_i}{p}\log \left( 1+m_1 a_i\right) +\sum _{i=1}^{k} \frac{n_i}{p}\frac{\log (-m_2)}{y_n} \nonumber \\&\qquad +{\mathcal {O}}\left( \frac{1}{n^2}\right) \nonumber \\&\qquad +\sum _{i=1}^{k}\frac{n_i}{p}\frac{(1+m_2) a_i}{(1+m_2 a_i)(1-a_i)}+\sum _{i=1}^{k}\frac{n_i}{p}\frac{a_i y_n m_2^2-a_i(1+m_2)^2}{(m_2-m_1)(1+a_i m_2)(1+m_2)}\nonumber \\&\qquad +\sum _{i=1}^{k}\frac{n_i}{p} \frac{(1+m_2)^2-m_2^2y_n}{(m_2-m_1)(1+m_2)^2}+\sum _{i=1}^{k}\frac{n_i}{p}\frac{y_n(2a_i-2-y_n)}{(1+m_1)^2(1+m_2)^2(1-a_i)}. \end{aligned}$$
(36)

Via an analogous argument, we proceed to calculate \(F^{y_n,H_p}(1/(x+1/b))\). When \(0<y_n<1\), note that for \(f_3(x)=1/(x+1/b)\) we have

$$\begin{aligned} f_3\left( -\frac{1}{m}+\frac{y_n}{1+m}\right) =\frac{m(1+m)b}{(m-\widetilde{m_1})(m-\widetilde{m_2})}, \end{aligned}$$

where

$$\begin{aligned} \widetilde{m_1}&=\frac{-((y_n-1)b+1)+\sqrt{((y_n-1)b+1)^2+4b}}{2}>0,\\ \widetilde{m_2}&=\frac{-((y_n-1)b+1)-\sqrt{((y_n-1)b+1)^2+4b}}{2}\in \left[ \frac{-1}{1-\sqrt{y_n}},\frac{-1}{1+\sqrt{y_n}}\right] . \end{aligned}$$

Then it can be deduced that when calculating the contour integrals in Theorem 3, the potential poles are \(\{m=-1\},~\{m=-1/a_i,~i=k_1+1,\ldots , k\}\) and \(\{m=m_2\}\). For (11),

$$\begin{aligned} (11)&=-\frac{1}{2\pi i p}\oint _{{\mathcal {C}}_{1}}f_3\left( -\frac{1}{m}+\frac{y_n}{1+m}\right) \left( \frac{M}{y_n m}-\sum _{i=1}^{k}\frac{n_i a_i^2 m}{(1+a_i m)^2}\right) dm\\&=\frac{1}{2\pi i p}\oint _{{\mathcal {C}}_1}\frac{m(1+m)b}{(m-\widetilde{m_1})(m-\widetilde{m_2})}\sum _{i=1}^{k_1}\frac{n_i a_i^2 m}{(1+a_i m)^2}dm\\&\quad +\frac{1}{2\pi i p}\oint _{{\mathcal {C}}_1}\frac{m(1+m)b}{(m-\widetilde{m_1})(m-\widetilde{m_2})}\sum _{i=k_1+1}^{k}\frac{n_i a_i}{1+a_i m}dm\\&\quad -\frac{1}{2\pi i p}\oint _{{\mathcal {C}}_1}\frac{m(1+m)b}{(m-\widetilde{m_1})(m-\widetilde{m_2})}\sum _{i=k_1+1}^{k}\frac{n_i a_i}{(1+a_i m)^2}dm\\&\quad -\frac{1}{2\pi i p}\oint _{{\mathcal {C}}_1}\frac{m(1+m)b}{(m-\widetilde{m_1})(m-\widetilde{m_2})}\frac{M}{y_n m}dm\\&=\sum _{i=1}^{k_1} \frac{n_i}{p}\frac{\widetilde{m_2}^2(1+\widetilde{m_2})ba_i^2}{(\widetilde{m_2}-\widetilde{m_1})(1+a_i \widetilde{m_2})^2}+\sum _{i=k_1+1}^k \frac{n_i}{p}\frac{(1-a_i)b}{(1+\widetilde{m_1} a_i)(1+\widetilde{m_2} a_i)}\\&\quad +\sum _{i=k_1+1}^k \frac{n_i}{p}\frac{\widetilde{m_2}(1+\widetilde{m_2})ba_i}{(\widetilde{m_2}-\widetilde{m_1})(1+\widetilde{m_2} a_i)}\\&\quad -\sum _{i=k_1+1}^k \frac{n_i}{p}\frac{a_i \widetilde{m_2}(1+\widetilde{m_2})b}{(1+a_i \widetilde{m_2})^2(\widetilde{m_2}-\widetilde{m_1})}-\sum _{i=k_1+1}^k \frac{n_i}{p}\frac{b^2a_i (2a_i-a_i^2-1+y_n)}{(1+\widetilde{m_1 }a_i)^2(1+\widetilde{m_2} a_i)^2}\\&\quad -\sum _{i=1}^{k} \frac{n_i}{p}\frac{(1+\widetilde{m_2})b}{(\widetilde{m_2}-\widetilde{m_1})y_n}\\&=\sum _{i=1}^k \frac{n_i}{p} \frac{\widetilde{m_2}^2(1+\widetilde{m_2})ba_i^2}{(\widetilde{m_2}-\widetilde{m_1})(1+a_i \widetilde{m_2})^2}+\sum _{i=k_1+1}^k \frac{n_i}{p}\frac{(1-a_i)b}{(1+\widetilde{m_1} a_i)(1+\widetilde{m_2} a_i)}\\&\quad -\sum _{i=k_1+1}^k \frac{n_i}{p}\frac{(y_n-(a_i-1)^2)b^2a_i}{(1+\widetilde{m_1} a_i)^2(1+\widetilde{m_2} a_i)^2}\\&\quad -\sum _{i=1}^k \frac{n_i}{p}\frac{(1+\widetilde{m_2})b}{(\widetilde{m_2}-\widetilde{m_1})y_n}. \end{aligned}$$

Next, (12) can be calculated as

$$\begin{aligned} (12)&=\frac{1}{2 \pi i p}\oint _{{\mathcal {C}}_1}\frac{m^2(1+m)^2b^2}{(m-\widetilde{m_1})^2(m-\widetilde{m_2})^2}\sum _{i=1}^{k}\left( \frac{n_i a_i}{1+a_i m}-\frac{n_i}{1+m}\right) \\&\quad {\times }\left( \frac{1}{m}-\frac{y_n m}{(1+m)^2}\right) dm\\&\triangleq I_1+I_2+I_3+I_4, \end{aligned}$$

where

$$\begin{aligned} I_1&=\frac{1}{2\pi i p}\oint _{{\mathcal {C}}_1}\sum _{i=1}^k \frac{m(1+m)^2b^2}{(m-\widetilde{m_1})^2(m-\widetilde{m_2})^2}\frac{n_i a_i}{1+m a_i}dm\\&=-\sum _{i=k_1+1}^k \frac{n_i}{p}\frac{a_i(a_i-1)^2b^2}{(1+\widetilde{m_1} a_i)^2(1+\widetilde{m_2} a_i)^2} \\&\quad +\sum _{i=1}^k \frac{n_i}{p}\frac{b^2a_i(1+\widetilde{m_2})(\widetilde{m_1}+\widetilde{m_2}+3\widetilde{m_1}\widetilde{m_2}+(2a_i(\widetilde{m_1}+1)-1)\widetilde{m_2}^2)}{(\widetilde{m_1}-\widetilde{m_2})^3(1+a_i \widetilde{m_2})^2},\\ I_2&=-\frac{1}{2\pi i p}\oint _{{\mathcal {C}}_1}\sum _{i=1}^k \frac{m^3b^2n_i y_n a_i}{(m-\widetilde{m_1})^2(m-\widetilde{m_2})^2(1+ma_i)}dm\\&=\sum _{i=k_1+1}^k \frac{n_i}{p} \frac{b^2y_n a_i}{(1+\widetilde{m_1} a_i)^2(1+\widetilde{m_2} a_i)^2}-\sum _{i=1}^k \frac{n_i y_n b^2}{p}\frac{a_i \widetilde{m_2}^2 (-\widetilde{m_2}+3\widetilde{m_1}+2a_i \widetilde{m_1} \widetilde{m_2})}{(\widetilde{m_1}-\widetilde{m_2})^3(1+a_i \widetilde{m_2})^2},\\ I_3&=-\frac{1}{2\pi i p}\oint _{{\mathcal {C}}_1}\sum _{i=1}^k \frac{m(1+m)b^2n_i}{(m-\widetilde{m_1})^2(m-\widetilde{m_2})^2}dm=-\sum _{i=1}^k \frac{n_i b^2}{p}\frac{\widetilde{m_1}+\widetilde{m_2}+2\widetilde{m_1}\widetilde{m_2}}{(\widetilde{m_1}-\widetilde{m_2})^3},\\ I_4&=\frac{1}{2\pi i p}\oint _{{\mathcal {C}}_1}\sum _{i=1}^k \frac{m^3 b^2 y_n n_i}{(m-\widetilde{m_1})^2(m-\widetilde{m_2})^2(1+m)}dm\\&=-\sum _{i=1}^k \frac{n_i y_n b^2}{p}\frac{1}{(1+\widetilde{m_1})^2(1+\widetilde{m_2})^2}+\sum _{i=1}^k \frac{n_i b^2 y_n}{p}\frac{\widetilde{m_2}^2(\widetilde{m_2}-3\widetilde{m_1}-2\widetilde{m_1}\widetilde{m_2})}{(\widetilde{m_2}+1)^2(\widetilde{m_2}-\widetilde{m_1})^3}. \end{aligned}$$

Lastly, (13) can be found to be

$$\begin{aligned} (13)=\left( 1-\frac{M}{p}\right) F^{y_n}\left( \frac{1}{x+\frac{{\text {tr}}\left( {\varvec{\varSigma }}_p\right) }{p}}\right) +\frac{1}{p}\sum _{i=1}^{k_1}\frac{n_i(1-a_i)b}{(1+\widetilde{m_1}a_i)(1+\widetilde{m_2}a_i)}+{\mathcal {O}}\left( \frac{1}{n^2}\right) . \end{aligned}$$

By Proposition 2.10 in Yao et al. (2015), we can compute the M-P law \(F^{y_n}(1/(x+1/b))\) as

$$\begin{aligned} F^{y_n}\left( \frac{1}{x+\frac{1}{b}}\right)&=\int _{(1-\sqrt{y_n})^2}^{(1+\sqrt{y_n})^2}\frac{\frac{1}{x+\frac{1}{b}}}{2\pi x y_n}\sqrt{(x-(1-\sqrt{y_n})^2)((1+\sqrt{y_n})^2-x)}dx\\&=-\frac{1}{4\pi i}\oint _{|z|=1}\frac{\frac{1}{|1+\sqrt{y_n}z|^2+\frac{1}{b}}}{z^2(1+\sqrt{y_n}z)(z+\sqrt{y_n})}(1-z^2)^2dz. \end{aligned}$$

Solving \(z(|1+\sqrt{y_n}z|^2+1/b)=\sqrt{y_n}z^2+(y_n+1/b+1)z+\sqrt{y_n}=0\) yields

$$\begin{aligned} \widetilde{y_1}&=\frac{-\left( y_n+\frac{1}{b}+1\right) +\sqrt{(y_n+\frac{1}{b}+1)^2-4y_n}}{2\sqrt{y_n}}\in (-1,0),\\ \widetilde{y_2}&=\frac{-\left( y_n+\frac{1}{b}+1\right) -\sqrt{(y_n+\frac{1}{b}+1)^2-4y_n}}{2\sqrt{y_n}}\notin (-1,0). \end{aligned}$$

It turns out that

$$\begin{aligned} F^{y_n}\left( \frac{1}{x+\frac{1}{b}}\right)&=-\frac{1}{2}\left[ \frac{1}{y_n}+\frac{y_n-1}{y_n(\widetilde{y_1}+\sqrt{y_n})(\widetilde{y_2}+\sqrt{y_n})} \right. \nonumber \\&\left. \quad +\frac{(1-\widetilde{y_1}^2)^2}{y_n(\widetilde{y_1} -\widetilde{y_2})\widetilde{y_1}\left( \widetilde{y_1}+\frac{1}{\sqrt{y_n}}\right) (\widetilde{y_1}+\sqrt{y_n})}\right] . \end{aligned}$$
(37)

Combining (37) together with (11), (12) and (13) for \(f_3(x)\) as given above, we obtain the desired result that

$$\begin{aligned} \begin{aligned}&F^{y_n,H_p}\left( \frac{1}{x+\frac{1}{b}}\right) \\&\quad =\left( 1-\frac{M}{p}\right) F^{y_n}\left( \frac{1}{x+\frac{1}{b}}\right) +\frac{1}{p}\sum _{i=1}^k \frac{n_i b(1-a_i)}{p(1+\widetilde{m_1} a_i)(1+\widetilde{m_2} a_i)}+{\mathcal {O}}\left( \frac{1}{n^2}\right) \\&\qquad +\sum _{i=1}^k \frac{n_i}{p}\frac{\widetilde{m_2}^2(1+\widetilde{m_2})ba_i^2}{(\widetilde{m_2}-\widetilde{m_1})(1+a_i\widetilde{m_2})^2}-\sum _{i=1}^k\frac{n_i}{p}\frac{(1+\widetilde{m_2})b}{(\widetilde{m_2}-\widetilde{m_1})y_n}\\&\qquad +\sum _{i=1}^k \frac{n_i b^2}{p}\frac{a_i(1+\widetilde{m_2})((2a_i-1)\widetilde{m_2}^2+\widetilde{m_1}+\widetilde{m_2}+3\widetilde{m_1}\widetilde{m_2}+2a_i\widetilde{m_1}\widetilde{m_2}^2)}{(\widetilde{m_1}-\widetilde{m_2})^3(1+a_i\widetilde{m_2})^2}\\&\qquad -\sum _{i=1}^k \frac{n_i y_n b^2}{p}\frac{a_i \widetilde{m_2}^2(-\widetilde{m_2}+3\widetilde{m_1}+2a_i\widetilde{m_1}\widetilde{m_2})}{(\widetilde{m_1}-\widetilde{m_2})^3(1+a_i \widetilde{m_2})^2}-\sum _{i=1}^k \frac{n_i b^2}{p}\frac{\widetilde{m_1}+\widetilde{m_2}+2\widetilde{m_1}\widetilde{m_2}}{(\widetilde{m_1}-\widetilde{m_2})^3}\\&\qquad -\sum _{i=1}^k \frac{n_i b^2 y_n}{p}\frac{1}{(1+\widetilde{m_1})^2(1+\widetilde{m_2})^2}+\sum _{i=1}^k \frac{n_i b^2 y_n}{p}\frac{\widetilde{m_2}^2(\widetilde{m_2}-3\widetilde{m_1}-2\widetilde{m_1}\widetilde{m_2})}{(\widetilde{m_2}+1)^2(\widetilde{m_2}-\widetilde{m_1})^3}. \end{aligned} \end{aligned}$$
(38)

By replacing b with 1 in (38) we can get the asymptotic expansion of \(F^{y_n,H_p}(1/(x+1))\). By (35), we know that \({\text {tr}}({\varvec{\varSigma }}_p)-pF^{y_n,H_p}(x)={\mathcal {O}}(1/p)\). Thus the second term of (34) disappears when \(p\rightarrow \infty \). Furthermore, \({\text {tr}}({\varvec{\varSigma }}_p)-p=\sum _{i=1}^k n_i(a_i-1)\), which is a fixed constant. From (38) we can deduce that as \(n, p\rightarrow \infty \),

$$\begin{aligned} \left( {\text {tr}}({\varvec{\varSigma }}_p)-p\right) F^{y_n,H_p}\left( \frac{1}{x+1}\right) -\left( {\text {tr}}({\varvec{\varSigma }}_p)-p\right) F^{y_n}\left( \frac{1}{x+1}\right) \rightarrow 0, \end{aligned}$$

where \(F^{y_n}(1/(x+1))\) is given in (16) with y replaced by \(y_n\). As a result, (34) can reduce to

$$\begin{aligned}&-\frac{2}{n}\log T+\left( {\text {tr}}({\varvec{\varSigma }}_p)-p\right) F^{y_n}\left( \frac{1}{x+1}\right) +p F^{y_n,H_p}\left( \log (x+1)\right) \\&\qquad -p\log \left( {\text {tr}}\left( {\varvec{\varSigma }}_p\right) \right) \Rightarrow N(\mu ,V). \end{aligned}$$

The proof is complete. \(\square \)

1.5 Proof of Theorem 5

Proof

Note that when \(y\ge 1\) (34) remains valid since it is established under the condition that \(p/n \rightarrow y \in (0,\infty )\), although the form of \(F^{y_n,H_p}\) is different as \(y\in [1,\infty )\). Hence in the current context the main object is still to calculate \(F^{y_n,H_p}(x)\), \(F^{y_n,H_p}(1/(x+1/b))\), \(F^{y_n,H_p}(1/(x+1))\) and \(F^{y_n,H_p}(\log (x+1))\) according to Theorem 3.

Firstly, (35) is not changed when \(y\in [1,\infty )\). For \(F^{y_n,H_p}(\log (x+1))\), according to the proof of Theorem 2 in Wang et al. (2014), in order to make the integrand analytic in the new contour, \(m_2\) should be included in the region of the contour integral. See Fig.4 in Page 206 of Wang et al. (2014) and the corresponding analysis there for further details. Moreover, \(1<a_i\le 1+\sqrt{y_n}\) when \(i \in \{k_1+1, \ldots , k\}\). The computations \(F^{y_n,H_p}(\log (x+1))\) of are totally the same as those in Theorem 4. By the Cauchy’s residue theorem, we derive that

$$\begin{aligned} (11)&=\sum _{i=k_1+1}^{k}\frac{n_i}{p}\left( \frac{-m_1 a_i}{m_1 a_i+1}+\log \left( 1+m_1 a_i\right) \right) +\sum _{i=1}^{k}\frac{n_i}{p}\frac{\log (-m_2)}{y_n} \\&\quad +\sum _{i=1}^{k_1}\frac{n_i}{p}\log \left( \frac{1-a_i}{1+m_2 a_i}\right) -\sum _{i=1}^{k_1}\frac{n_i}{p}\frac{(1+m_2)a_i}{(1+a_i m_2)(a_i-1)}. \end{aligned}$$

Subsequently, by direct evaluation, (12) and (13) can be computed as

$$\begin{aligned} (12)&=\sum _{i=1}^k \frac{n_i}{p}\frac{a_i y_n m_2^2-a_i(1+m_2)^2}{(m_2-m_1)(1+a_i m_2)(1+m_2)}+\sum _{i=1}^k \frac{n_i}{p}\frac{(1+m_2)^2-m_2^2 y_n}{(m_2-m_1)(1+m_2)^2}\\&\quad +\sum _{i=k_1+1}^k \frac{n_i}{p}\frac{a_i (y_n-(1-a_i)^2)}{(1+m_1 a_i)(1+m_2 a_i)(a_i-1)}+\sum _{i=1}^k \frac{n_i}{p}\frac{y_n(2a_i-2-y_n)}{(1+m_1)^2(1+m_2)^2(1-a_i)}.\\ (13)&=\left( 1-\frac{M}{p}\right) F^{y_n}\left( \log \left( x+1\right) \right) +\frac{1}{p}\sum _{i=1}^{k_1} n_i \log \left( a_i+\frac{y_n a_i}{a_i-1}+1\right) +{\mathcal {O}}\left( \frac{1}{n^2}\right) ,\\&=\left( 1-\frac{M}{p}\right) F^{y_n}\left( \log \left( x+1\right) \right) +\frac{1}{p}\sum _{i=1}^{k_1} n_i \log \left( \frac{(1+m_1 a_i)(1+m_2 a_i)}{1-a_i}\right) \\&\quad +{\mathcal {O}}\left( \frac{1}{n^2}\right) , \end{aligned}$$

where \(F^{y_n}\left( \log \left( x+1\right) \right) \) is given in (9). As a result, when \(y\in [1,\infty )\),

$$\begin{aligned}&F^{y_n,H_p}\left( \log \left( x+1\right) \right) \nonumber \\&\quad =\left( 1-\frac{M}{p}\right) F^{y_n}\left( \log \left( x+1\right) \right) +\sum _{i=1}^{k}\frac{n_i}{p}\log \left( 1+m_1 a_i\right) \nonumber \\&\qquad +\sum _{i=1}^{k} \frac{n_i}{p}\frac{\log (-m_2)}{y_n}+{\mathcal {O}}\left( \frac{1}{n^2}\right) \nonumber \\&\qquad +\sum _{i=1}^{k}\frac{n_i}{p}\frac{(1+m_2) a_i}{(1+m_2 a_i)(1-a_i)}+\sum _{i=1}^{k}\frac{n_i}{p}\frac{a_i y_n m_2^2-a_i(1+m_2)^2}{(m_2-m_1)(1+a_i m_2)(1+m_2)}\nonumber \\&\qquad +\sum _{i=1}^{k}\frac{n_i}{p} \frac{(1+m_2)^2-m_2^2y_n}{(m_2-m_1)(1+m_2)^2}+\sum _{i=1}^{k}\frac{n_i}{p}\frac{y_n(2a_i-2-y_n)}{(1+m_1)^2(1+m_2)^2(1-a_i)}.\nonumber \\ \end{aligned}$$
(39)

For \(F^{y_n,H_p}\left( 1/(x+1/b)\right) \), proceeding as in the calculation in Theorem 4, we have

$$\begin{aligned} \begin{aligned}&F^{y_n,H_p}\left( \frac{1}{x+\frac{1}{b}}\right) \\&\quad =\left( 1-\frac{M}{p}\right) F^{y_n}\left( \frac{1}{x+\frac{1}{b}}\right) +\frac{1}{p}\sum _{i=1}^k \frac{n_i b(1-a_i)}{p(1+\widetilde{m_1} a_i)(1+\widetilde{m_2} a_i)}+{\mathcal {O}}\left( \frac{1}{n^2}\right) \\&\qquad +\sum _{i=1}^k \frac{n_i}{p}\frac{\widetilde{m_2}^2(1+\widetilde{m_2})ba_i^2}{(\widetilde{m_2}-\widetilde{m_1})(1+a_i\widetilde{m_2})^2}-\sum _{i=1}^k\frac{n_i}{p}\frac{(1+\widetilde{m_2})b}{(\widetilde{m_2}-\widetilde{m_1})y_n}\\&\qquad +\sum _{i=1}^k \frac{n_i b^2}{p}\frac{a_i(1+\widetilde{m_2})((2a_i-1)\widetilde{m_2}^2+\widetilde{m_1}+\widetilde{m_2}+3\widetilde{m_1}\widetilde{m_2}+2a_i\widetilde{m_1}\widetilde{m_2}^2)}{(\widetilde{m_1}-\widetilde{m_2})^3(1+a_i\widetilde{m_2})^2}\\&\qquad -\sum _{i=1}^k \frac{n_i y_n b^2}{p}\frac{a_i \widetilde{m_2}^2(-\widetilde{m_2}+3\widetilde{m_1}+2a_i\widetilde{m_1}\widetilde{m_2})}{(\widetilde{m_1}-\widetilde{m_2})^3(1+a_i \widetilde{m_2})^2}-\sum _{i=1}^k \frac{n_i b^2}{p}\frac{\widetilde{m_1}+\widetilde{m_2}+2\widetilde{m_1}\widetilde{m_2}}{(\widetilde{m_1}-\widetilde{m_2})^3}\\&\qquad -\sum _{i=1}^k \frac{n_i b^2 y_n}{p}\frac{1}{(1+\widetilde{m_1})^2(1+\widetilde{m_2})^2}+\sum _{i=1}^k \frac{n_i b^2 y_n}{p}\frac{\widetilde{m_2}^2(\widetilde{m_2}-3\widetilde{m_1}-2\widetilde{m_1}\widetilde{m_2})}{(\widetilde{m_2}+1)^2(\widetilde{m_2}-\widetilde{m_1})^3}, \end{aligned} \end{aligned}$$
(40)

where

$$\begin{aligned} F^{y_n}\left( \frac{1}{x+\frac{1}{b}}\right)&=-\frac{1}{2}\left[ \frac{1}{y_n}+\frac{(1-\widetilde{y_1})^2}{y_n(\widetilde{y_1}-\widetilde{y_2})\widetilde{y_1} \left( \widetilde{y_1}+\sqrt{y_n}\right) \left( \widetilde{y_1}+\frac{1}{\sqrt{y_n}}\right) } \right. \nonumber \\&\left. \quad +\frac{1-y_n}{y_n^2\left( \widetilde{y_1}+\frac{1}{\sqrt{y_n}}\right) \left( \widetilde{y_2}+\frac{1}{\sqrt{y_n}}\right) }\right] +\left( 1-\frac{1}{y_n}\right) b. \end{aligned}$$
(41)

By substituting 1 for b in (40), we can obtain the expression of \(F^{y_n,H_p}(1/(x+1))\). By (35), we know that \({\text {tr}}({\varvec{\varSigma }}_p)-pF^{y_n,H_p}(x)={\mathcal {O}}(1/p)\). Thus the second term of (34) disappears when \(p\rightarrow \infty \). Furthermore, \({\text {tr}}({\varvec{\varSigma }}_p)-p=\sum _{i=1}^k n_i(a_i-1)\), which is a fixed constant. From (40) we can deduce that as \(n, p\rightarrow \infty \),

$$\begin{aligned} \left( {\text {tr}}({\varvec{\varSigma }}_p)-p\right) F^{y_n,H_p}\left( \frac{1}{x+1}\right) -\left( {\text {tr}}({\varvec{\varSigma }}_p)-p\right) F^{y_n}\left( \frac{1}{x+1}\right) \rightarrow 0, \end{aligned}$$

where \(F^{y_n}(1/(x+1))\) is given in (18) with y replaced by \(y_n\). As a result, (34) can reduce to

$$\begin{aligned}&-\frac{2}{n}\log T+\left( {\text {tr}}({\varvec{\varSigma }}_p)-p\right) F^{y_n}\left( \frac{1}{x+1}\right) +p F^{y_n,H_p}\left( \log (x+1)\right) \\&\quad -p\log \left( {\text {tr}}\left( {\varvec{\varSigma }}_p\right) \right) \Rightarrow N(\mu ,V). \end{aligned}$$

The proof is complete. \(\square \)

1.6 Proof of Corollary 1

Proof

  1. (1)

    When \(p/n\rightarrow y \in (0,1)\), combining Theorems 1 and 4 yields

    $$\begin{aligned} \beta (\alpha )&=1-\varPhi \left( \varPhi ^{-1}(1-\alpha ) \right. \\&\left. \quad -\frac{\lim \limits _{n\rightarrow \infty }\left( {\text {tr}}({\varvec{\varSigma }}_p)-p\right) F^{y_n}\left( \frac{1}{x+1}\right) -\lim \limits _{n\rightarrow \infty }p\log ({\text {tr}}({\varvec{\varSigma }}_p)/p)+\varDelta _1}{\sqrt{V}}\right) , \end{aligned}$$

    where

    $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\left( {\text {tr}}({\varvec{\varSigma }}_p)-p\right) F^{y_n}\left( \frac{1}{x+1}\right)&=\sum _{i=1}^k n_i(a_i-1) F^{y}\left( \frac{1}{x+1}\right) ,\\ \lim \limits _{n\rightarrow \infty }p\log ({\text {tr}}({\varvec{\varSigma }}_p)/p)&=\lim \limits _{n\rightarrow \infty }p\log \left( 1-\frac{M}{p}+\frac{\sum _{i=1}^k n_i a_i}{p}\right) \\&=\sum _{i=1}^k n_i(a_i-1), \end{aligned}$$

    and

    $$\begin{aligned} \begin{aligned} \varDelta _1&=\lim _{p\rightarrow \infty } \left[ pF^{y_n,H_p}\left( \log (x+1)\right) -pF^{y_n}\left( \log (x+1)\right) \right] \\&=-MF^{y}\left( \log \left( x+1\right) \right) +\sum _{i=1}^{k}n_i\log \left( 1+{\widehat{m}}_1 a_i\right) +\sum _{i=1}^{k} \frac{n_i\log (-{\widehat{m}}_2)}{y}\\&\quad +\sum _{i=1}^{k}\frac{n_i(1+{\widehat{m}}_2) a_i}{(1+{\widehat{m}}_2 a_i)(1-a_i)}+\sum _{i=1}^{k}\frac{n_i a_i y {\widehat{m}}_2^2-n_i a_i(1+{\widehat{m}}_2)^2}{({\widehat{m}}_2-{\widehat{m}}_1)(1+a_i {\widehat{m}}_2)(1+{\widehat{m}}_2)}\\&\quad +\sum _{i=1}^{k} \frac{n_i(1+{\widehat{m}}_2)^2-n_i {\widehat{m}}_2^2y}{({\widehat{m}}_2-{\widehat{m}}_1)(1+{\widehat{m}}_2)^2}+\sum _{i=1}^{k}\frac{n_i y(2a_i-2-y)}{(1+{\widehat{m}}_1)^2(1+{\widehat{m}}_2)^2(1-a_i)}, \end{aligned} \end{aligned}$$
    (42)

    where \(F^{y}(1/(1+x))\) is given in (4), \(F^{y}\left( \log (x+1)\right) \) is given in (5), \({\widehat{m}}_1=(\sqrt{y^2+4}-y)/2\) and \({\widehat{m}}_2=(-y-\sqrt{y^2+4})/2\). As a consequence,

    $$\begin{aligned} \beta (\alpha )=1-\varPhi \left( \varPhi ^{-1}(1-\alpha )-\frac{\sum \limits _{i=1}^k n_i(a_i-1)\left( 1-F^{y}\left( \frac{1}{x+1}\right) \right) +\varDelta _1}{\sqrt{V}}\right) . \end{aligned}$$
  2. 2)

    When \(p/n\rightarrow y\in [1,+\infty )\), combining Theorem 2 and Theorem 5 yields

    $$\begin{aligned} \beta (\alpha )&=1-\varPhi \left( \varPhi ^{-1}(1-\alpha ) \right. \\&\left. \quad -\frac{\lim \limits _{n\rightarrow \infty }\left( {\text {tr}}({\varvec{\varSigma }}_p)-p\right) F^{y_n}\left( \frac{1}{x+1}\right) -\lim \limits _{n\rightarrow \infty }p\log ({\text {tr}}({\varvec{\varSigma }}_p)/p)+\varDelta _2}{\sqrt{V}}\right) , \end{aligned}$$

    where

    $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\left( {\text {tr}}({\varvec{\varSigma }}_p)-p\right) F^{y_n}\left( \frac{1}{x+1}\right)&=\sum _{i=1}^k n_i(a_i-1) F^{y}\left( \frac{1}{x+1}\right) ,\\ \lim \limits _{n\rightarrow \infty }p\log ({\text {tr}}({\varvec{\varSigma }}_p)/p)&=\lim \limits _{n\rightarrow \infty }p\log \left( 1-\frac{M}{p}+\frac{\sum _{i=1}^k n_i a_i}{p}\right) \\&=\sum _{i=1}^k n_i(a_i-1), \end{aligned}$$

    and

    $$\begin{aligned} \begin{aligned} \varDelta _2&=\lim _{p\rightarrow \infty } \left[ pF^{y_n,H_p}\left( \log (x+1)\right) -pF^{y_n}\left( \log (x+1)\right) \right] \\&=-MF^{y}\left( \log \left( x+1\right) \right) +\sum _{i=1}^{k}n_i\log \left( 1+{\widehat{m}}_1 a_i\right) +\sum _{i=1}^{k} \frac{n_i\log (-{\widehat{m}}_2)}{y}\\&\quad +\sum _{i=1}^{k}\frac{n_i(1+{\widehat{m}}_2) a_i}{(1+{\widehat{m}}_2 a_i)(1-a_i)}+\sum _{i=1}^{k}\frac{n_i a_i y {\widehat{m}}_2^2-n_i a_i(1+{\widehat{m}}_2)^2}{({\widehat{m}}_2-{\widehat{m}}_1)(1+a_i {\widehat{m}}_2)(1+{\widehat{m}}_2)}\\&\quad +\sum _{i=1}^{k} \frac{n_i(1+{\widehat{m}}_2)^2-n_i {\widehat{m}}_2^2y}{({\widehat{m}}_2-{\widehat{m}}_1)(1+{\widehat{m}}_2)^2}+\sum _{i=1}^{k}\frac{n_i y(2a_i-2-y)}{(1+{\widehat{m}}_1)^2(1+{\widehat{m}}_2)^2(1-a_i)}, \end{aligned} \end{aligned}$$
    (43)

    where \(F^{y}(1/(1+x))\) is given in (6), \(F^{y}\left( \log (x+1)\right) \) is given in (7), \({\widehat{m}}_1=(\sqrt{y^2+4}-y)/2\) and \({\widehat{m}}_2=(-y-\sqrt{y^2+4})/2\). As a consequence,

    $$\begin{aligned} \beta (\alpha )=1-\varPhi \left( \varPhi ^{-1}(1-\alpha )-\frac{\sum \limits _{i=1}^k n_i(a_i-1)\left( 1-F^{y}\left( \frac{1}{x+1}\right) \right) +\varDelta _2}{\sqrt{V}}\right) . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xu, X. High-dimensional sphericity test by extended likelihood ratio. Metrika 84, 1169–1212 (2021). https://doi.org/10.1007/s00184-021-00816-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-021-00816-3

Keywords

Navigation