Skip to main content
Log in

On moments of folded and truncated multivariate Student-t distributions based on recurrence relations

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The use of the first two moments of the truncated multivariate Student-t distribution has attracted increasing attention from a wide range of applications. This paper develops recurrence relations for integrals that involve the density of multivariate Student-t distributions. The proposed techniques allow for fast computation of arbitrary-order product moments of folded and truncated multivariate Student-t distributions and offer explicit expressions of low-order moments of folded and truncated multivariate Student-t distributions. A real data example containing positive censored responses is applied to illustrate the effectiveness and importance of the proposed methods. An R MomTrunc package is developed and publicly available on the CRAN repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arellano-Valle RB, Bolfarine H (1995) On some characterizations of the t-distribution. Stat Probab Lett 25:79–85

    Article  Google Scholar 

  • Arismendi JC (2013) Multivariate truncated moments. J Multivar Anal 117:41–75

    Article  MathSciNet  Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J R Stat Soc: Ser B (Statistical Methodology) 65(2):367–389

    Article  MathSciNet  Google Scholar 

  • Branco MD, Dey K (2001) A general class of multivariate skew-elliptical distributions. J Multivar Anal 79:99–113

    Article  MathSciNet  Google Scholar 

  • Chakraborty AK, Chatterjee M (2013) On multivariate folded normal distribution. Sankhya B 75:1–15

    Article  MathSciNet  Google Scholar 

  • De Bastiani F, de Aquino Cysneiros AHM, Uribe-Opazo MA, Galea M (2015) Influence diagnostics in elliptical spatial linear models. Test 24:322–340

    Article  MathSciNet  Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and related distribuitions. Chapman & Hall, London

    Book  Google Scholar 

  • Flecher C, Allard D, Naveau P (2010) Truncated skew-normal distributions: moments, estimation by weighted moments and application to climatic data. Metron 68:331–345

    Article  MathSciNet  Google Scholar 

  • Fonseca TC, Ferreira MA, Migon HS (2008) Objective bayesian analysis for the student-t regression model. Biometrika 95:325–333

    Article  MathSciNet  Google Scholar 

  • Galarza CE, Kan R, Lachos VH, (2020) MomTrunc: moments of folded and doubly truncated multivariate distributions. R package version 5.69. https://CRAN.R-project.org/package=MomTrunc

  • Genç Aİ (2013) Moments of truncated normal/independent distributions. Stat Pap 54:741–764

    Article  MathSciNet  Google Scholar 

  • Ho HJ, Lin TI, Chen HY, Wang WL (2012) Some results on the truncated multivariate t distribution. J Stat Plan Inference 142:25–40

    Article  MathSciNet  Google Scholar 

  • Hoffman HJ, Johnson RE (2015) Pseudo-likelihood estimation of multivariate normal parameters in the presence of left-censored data. J Agric Biol Environ Stat 20(1):156–171

    Article  MathSciNet  Google Scholar 

  • Jawitz JW (2004) Moments of truncated continuous univariate distributions. Adv Water Resour 27:269–281

    Article  Google Scholar 

  • Kan R, Robotti C (2017) On moments of folded and truncated multivariate normal distributions. J Comput Graph Stat 25:930–934

    Article  MathSciNet  Google Scholar 

  • Kim HM (2008) A note on scale mixtures of skew normal distribution. Stat Probab Lett 78:1694–1701

    Article  MathSciNet  Google Scholar 

  • Lachos VH, Moreno EJL, Chen K, Cabral CRB (2017) Finite mixture modeling of censored data using the multivariate student-t distribution. J Multivar Anal 159:151–167

    Article  MathSciNet  Google Scholar 

  • Lien DHD (1985) Moments of truncated bivariate log-normal distributions. Econ Lett 19:243–247

    Article  MathSciNet  Google Scholar 

  • Lin Tsung-I, Wang Wan-Lun (2017) Multivariate-t nonlinear mixed models with application to censored multi-outcome AIDS studies. Biostatistics 18(4):666–681

    Google Scholar 

  • Lin Tsung-I, Wang Wan-Lun (2020) Multivariate-t linear mixed models with censored responses, intermittent missing values and heavy tails. Stat Methods Med Res 29(5):1288–1304

    Article  MathSciNet  Google Scholar 

  • Lin Tsung I, Ho Hsiu J, Chen Chiang L (2009) Analysis of multivariate skew normal models with incomplete data. J Multivar Anal 100(10):2337–2351

    Article  MathSciNet  Google Scholar 

  • Matos LA, Prates MO, Chen MH, Lachos VH (2013) Likelihood-based inference for mixed-effects models with censored response using the multivariate-t distribution. Stat Sin 23:1323–1342

    MathSciNet  MATH  Google Scholar 

  • McLachlan GJ, Krishnan T (2008) The EM algorithm and extensions, 2nd edn. Wiley, London

    Book  Google Scholar 

  • Peel D, McLachlan GJ (2000) Robust mixture modelling using the t distribution. Stat Comput 10:339–348

    Article  Google Scholar 

  • Pinheiro JC, Liu CH, Wu YN (2001) Efficient algorithms for robust estimation in linear mixed-effects models using a multivariate t-distribution. J Comput Graph Stat 10:249–276

    Article  MathSciNet  Google Scholar 

  • Roozegar R, Balakrishnan N, Jamalizadeh A (2020) On moments of doubly truncated multivariate normal mean-variance mixture distributions with application to multivariate tail conditional expectation. J Multivar Anal 177:104586

    Article  MathSciNet  Google Scholar 

  • Savalli C, Paula GA, Cysneiros FJ (2006) Assessment of variance components in elliptical linear mixed models. Stat Model 6:59–76

    Article  MathSciNet  Google Scholar 

  • Tallis GM (1961) The moment generating function of the truncated multi-normal distribution. J R Stat Soc Ser B (Statistical Methodology) 23:223–229

    MathSciNet  MATH  Google Scholar 

  • VDEQ (2003) The quality of virginia non-tidal streams: first year report. Richmond, Virginia. VDEQ Technical Bulletin. WQA/2002-001

  • Wang WL, Castro LM, Lin TI (2017) Automated learning of t factor analysis models with complete and incomplete data. J Multivar Anal 161:157–171

    Article  MathSciNet  Google Scholar 

  • Wang WL, Fan TH (2011) Estimation in multivariate t linear mixed models for multiple longitudinal data. Stat Sin 21:1857–1880

    MathSciNet  MATH  Google Scholar 

  • Wang WL, Lin TI (2014) Multivariate t nonlinear mixed-effects models for multi-outcome longitudinal data with missing values. Stat Med 33:3029–3046

    Article  MathSciNet  Google Scholar 

  • Wang WL, Lin TI (2015) Bayesian analysis of multivariate t linear mixed models with missing responses at random. J Stat Comput Simul 85:3594–3612

    Article  MathSciNet  Google Scholar 

  • Wang WL, Castro LM, Lachos VH, Lin TI (2019) Model-based clustering of censored data via mixtures of factor analyzers. Comput Stat Data Anal 140:104–121

    Article  MathSciNet  Google Scholar 

  • Wang Wan-Lun, Lin Tsung-I, Lachos Victor H (2018) Extending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tails. Stat Methods Med Res 27(1):48–64

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the Associate Editor and two reviewers for their constructive comments, which helped to improve this paper substantially. C. Galarza acknowledges support from FAPESP-Brazil (Grant 2015/17110-9 and Grant 2018/11580-1). T.I. Lin and W.L. Wang would like to acknowledge the support of the Ministry of Science and Technology of Taiwan under Grant Nos. MOST 109-2118-M-005-005-MY3 and MOST 107-2628-M-035-001-MY3, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor H. Lachos.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A: Details for the expectations in EM algorithm

To compute the required expected values of all latent data, we find that most of them can be written in terms of \(\mathbb {E}(U_i \mid \mathbf{Y }_i)\), and thereby we write \({\widehat{u}}_i= \mathbb {E}\{ \mathbb {E}(U_i\mid \mathbf{Y }_i)\mid \mathbf{V }_i,\mathbf{C }_i,{\widehat{{\varvec{\theta }}}}^{(k)}\} \), where \(\mathbb {E}(U_i \mid \mathbf{Y }_i)=(\nu +p)/(\nu +\delta )\) with \(\delta =(\mathbf{Y }_i-{\varvec{\mu }})^{\top }{\varvec{\Sigma }}^{-1}(\mathbf{Y }_i-{\varvec{\mu }})\). Subsequently, we discuss the closed-form expressions of conditional expectations as follows:

  1. 1.

    If the ith subject has only non-censored components, then

    $$\begin{aligned} \widehat{u\mathbf{y }_i^{2}}^{(k)}= & {} \left\{ \frac{\nu +p}{\nu +{\widehat{\delta }}^{(k)}(\mathbf{y }_i)} \right\} \mathbf{y }_i\mathbf{y }^{\top }_i,\quad \widehat{u\mathbf{y }}^{(k)}_i=\left\{ \frac{\nu +p}{\nu +{\widehat{\delta }}^{(k)}(\mathbf{y }_i)}\right\} \mathbf{y }_i,\quad {\widehat{u}}^{(k)}_i=\left\{ \frac{\nu +p}{\nu +{\widehat{\delta }}^{(k)}(\mathbf{y }_i)}\right\} , \end{aligned}$$

    where \({\widehat{\delta }}^{(k)}(\mathbf{y }_i)=(\mathbf{y }_i-{\widehat{{\varvec{\mu }}}}^{(k)})^{\top } ({\widehat{{\varvec{\Sigma }}}}^{(k)})^{-1}(\mathbf{y }_i-{\widehat{{\varvec{\mu }}}}^{(k)}).\)

  2. 2.

    If the ith subject has only censored components, from Proposition 3 with \(r=1\), we have

    $$\begin{aligned} \widehat{u\mathbf{y }_i^{2}}^{(k)}= & {} \mathbb {E}[\displaystyle U_i\mathbf{Y }_i\mathbf{Y }_i^{\top } \mid \mathbf{V }_i,\mathbf{C }_i,{\widehat{{\varvec{\theta }}}}^{(k)}]={\widehat{\varphi }}^{(k)}(\mathbf{V }_i) {\widehat{\mathbf{w }}}_i^{2 ^{c(k)}},\,\\ \widehat{u\mathbf{y }}^{(k)}_i= & {} \mathbb {E}[\displaystyle U_i\mathbf{Y }_i\mid \mathbf{V }_i,\mathbf{C }_i, {\widehat{{\varvec{\theta }}}}^{(k)}]={\widehat{\varphi }}^{(k)}(\mathbf{V }_i) {\widehat{\mathbf{w }}}_i^{c(k)},\,\, \\ {\widehat{u}}^{(k)}_i= & {} \mathbb {E}[\displaystyle U_i\mid \mathbf{V }_i,\mathbf{C }_i,{\widehat{{\varvec{\theta }}}}^{(k)}]={\widehat{\varphi }}^{(k)}(\mathbf{V }_i), \end{aligned}$$

    where

    $$\begin{aligned} {\widehat{\varphi }}^{(k)}(\mathbf{V }_i)=\frac{L_{p}({\mathbf{V }}_{1i}, {\mathbf{V }}_{2i};{\widehat{{\varvec{\mu }}}}^{(k)}, \quad {\widehat{{\varvec{\Sigma }}}}^{*(k)},\nu +2)}{L_{p}({\mathbf{V }}_{1i}, {\mathbf{V }}_{2i};{\widehat{{\varvec{\mu }}}}^{(k)}, \quad {\widehat{{\varvec{\Sigma }}}}^{(k)},\nu )},\nonumber \\ {\widehat{\mathbf{w }}}_i^{c(k)}=\mathbb {E}[\mathbf{W }_i\mid {\widehat{{\varvec{\theta }}}}^{(k)}], \quad {\widehat{\mathbf{w }}}_i^{2 ^{c(k)}}=\mathbb {E}[\mathbf{W }_i \mathbf{W }_i^\top \mid {\widehat{{\varvec{\theta }}}}^{(k)}] {,} \end{aligned}$$
    (16)

    with \(\mathbf{W }_i\sim Tt_{p}({\widehat{{\varvec{\mu }}}}^{(k)},{\widehat{{\varvec{\Sigma }}}}^{*(k)},\nu +2; (\mathbf{V }_{1i},\mathbf{V }_{2i}))\) and \({\widehat{{\varvec{\Sigma }}}}^{*(k)}=\displaystyle \frac{\nu }{\nu +2}{\widehat{{\varvec{\Sigma }}}}^{(k)}\). To compute \(\mathbb {E}[\mathbf{W }_i]\) and \(\mathbb {E}[\mathbf{W }_i\mathbf{W }_i^{\top }]\) we use the results given in Sect. 3.1.

  3. 3.

    If the ith subject has both censored and uncensored components, then \((\mathbf{Y }_i\mid \mathbf{V }_i,\mathbf{C }_i)\), \( (\mathbf{Y }_i\mid \mathbf{V }_i,\mathbf{C }_i,\mathbf{y }^o_i)\), and \((\mathbf{Y }^c_i\mid \mathbf{V }_i,\mathbf{C }_i,\mathbf{y }^o_i)\) are equivalent processes. We obtain

    $$\begin{aligned} \widehat{u\mathbf{y }_i^{2}}^{(k)}&=\mathbb {E}(\displaystyle U_i\mathbf{Y }_i\mathbf{Y }_i^{\top }\mid \mathbf{y }^o_i,\mathbf{V }_i,\mathbf{C }_i,{\widehat{{\varvec{\theta }}}}^{(k)}) =\left( \begin{array}{cc} \mathbf{y }^o_i\mathbf{y }^{o\top }_i {\widehat{u}}^{(k)}_i &{} {\widehat{u}}^{(k)}_i\mathbf{y }^o_i \widehat{\mathbf{w }}^{c(k)\top }_i \\ {\widehat{u}}^{(k)}_i\widehat{\mathbf{w }}^{c(k)}_i\mathbf{y }^{o\top }_i &{}{\widehat{u}}^{(k)}_i {\widehat{\mathbf{w }}}_i^{2 ^{c(k)}}\\ \end{array}\right) ,\\ \widehat{u\mathbf{y }}^{(k)}_i&=\mathbb {E}(\displaystyle U_i\mathbf{Y }_i\mid \mathbf{y }^o_i,\mathbf{V }_i,\mathbf{C }_i, {\widehat{{\varvec{\theta }}}}^{(k)})=\mathrm {vec}(\mathbf{y }^o_i{\widehat{u}}^{(k)}_i, {\widehat{u}}^{(k)}_i\widehat{\mathbf{w }}^{c(k)}_i),\,\, \\ {\widehat{u}}^{(k)}_i&=\mathbb {E}(\displaystyle U_i\mid \mathbf{y }^o_i,\mathbf{V }_i,\mathbf{C }_i,{\widehat{{\varvec{\theta }}}}^{(k)})=\left\{ \frac{p^o_i+\nu }{\nu +{\widehat{\delta }}^{(k)}(\mathbf{y }^o_i)}\right\} \\&\displaystyle \frac{L_{p_i^c}(\mathbf{V }_{1i}^c,\mathbf{V }_{2i}^c;{\widehat{{\varvec{\mu }}}}^{co(k)}_i, \widetilde{\mathbf{S }}_i^{co(k)},\nu +p^o_i+2)}{L_{p_i^c}(\mathbf{V }_{1i}^c, \mathbf{V }_{2i}^c;{\widehat{{\varvec{\mu }}}}^{co(k)}_i, {\widetilde{\mathbf{S }}}_i^{co(k)},\nu +p^o_i)}, \end{aligned}$$

    where

    $$\begin{aligned} \widetilde{\mathbf{S }}_i^{co(k)}=\left\{ \displaystyle \frac{\nu +{\widehat{\delta }}^{(k)}(\mathbf{y }^o_i)}{\nu +2+p^o_i}\right\} {\widehat{{\varvec{\Sigma }}}}^{cc.o(k)}_{i}, \quad {\widehat{\delta }}^{(k)}(\mathbf{y }^o_i)=(\mathbf{y }^o_i-{\widehat{{\varvec{\mu }}}}^{o(k)}_i)^{\top } (\widehat{{{\varvec{\Sigma }}}}^{oo(k)}_i)^{-1}(\mathbf{y }^o_i-{\widehat{{\varvec{\mu }}}}^{o(k)}_i), \end{aligned}$$

    \({\widehat{{\varvec{\Sigma }}}}^{cc.o(k)}_{i}\) is defined as in equation (4.22) in the main document, \(\widehat{\mathbf{w }}^{c(k)}_i\) and \({\widehat{\mathbf{w }}}_i^{2 ^{c(k)}}\) are defined in (16) with \(\mathbf{W }_i\sim Tt_{p^c_i}({\widehat{{\varvec{\mu }}}}^{co(k)}_i,\widetilde{\mathbf{S }}_i^{co(k)}, \nu +p^o_i+2; (\mathbf{V }^c_{1i},\mathbf{V }^c_{2i}))\). Similarly, to compute \(\mathbb {E}[\mathbf{W }_i]\) and \(\mathbb {E}[\mathbf{W }_i\mathbf{W }_i^{\top }]\), we use the results given in Sect. 3.1.

1.2 Appendix B: Some illustrations using the R MomTrunc package

figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galarza, C.E., Lin, TI., Wang, WL. et al. On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika 84, 825–850 (2021). https://doi.org/10.1007/s00184-020-00802-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-020-00802-1

Keywords

Navigation