Skip to main content
Log in

Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

This paper proposes a penalized maximum quasi-likelihood (PMQL) estimation that can solve the problem of order selection and parameter estimation regarding the pth-order integer-valued time series models. The PMQL estimation can effectively delete the insignificant orders in model. By contrast, the significant orders can be retained and their corresponding parameters are estimated, simultaneously. Moreover, the PMQL estimation possesses certain robustness hence its order shrinkage effectiveness is superior to the traditional penalized estimation method even if the data is contaminated. The theoretical properties of the PMQL estimator, including the consistency and oracle properties, are also investigated. Numerical simulation results show that our method is effective in a variety of situations. The Westgren’s data set is also analyzed to illustrate the practicability of the PMQL method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad A, Francq C (2016) Poisson QMLE of count time series models. J Time Ser Anal 37:291–314

    Article  MathSciNet  Google Scholar 

  • Alzaid AA, Al-Osh M (1990) An integer-valued \(p\)th-order autoregressive structure (INAR(\(p\))) process. J Appl Prob 27:314–324

    Article  Google Scholar 

  • Aue A, Horváth L (2011) Quasi-likelihood estimation in stationary and nonstationary autoregressive models with random coefficients. Stat Sin 21:973–999

    MathSciNet  MATH  Google Scholar 

  • Azrak R, Mélard G (1998) The exact quasi-likelihood of time-dependent ARMA models. J Stat Plan Inference 68:31–45

    Article  MathSciNet  Google Scholar 

  • Azrak R, Mélard G (2006) Asymptotic properties of quasi-maximum likelihood estimators for ARMA models with time-dependent coefficients. Stat Inference Stoch Process 9:279–330

    Article  MathSciNet  Google Scholar 

  • Bose A, Mukherjee K (2003) Estimating the ARCH parameters by solving linear equations. J Time Ser Anal 24:127–136

    Article  MathSciNet  Google Scholar 

  • Chan NH, Yau CY, Zhang RM (2015) LASSO estimation of threshold autoregressive models. J Econ 189:285–296

    Article  MathSciNet  Google Scholar 

  • Chandra SA, Taniguchi M (2001) Estimating functions for nonlinear time series models. Ann Inst Stat Math 53:125–141

    Article  MathSciNet  Google Scholar 

  • Chen CW, Lee S (2016) Generalized Poisson autoregressive models for time series of counts. Comput Stat Data Anal 99:51–67

    Article  MathSciNet  Google Scholar 

  • Chen CW, Lee S (2017) Bayesian causality test for integer-valued time series models with applications to climate and crime data. J R Stat Soc Ser C 66:797–814

    Article  MathSciNet  Google Scholar 

  • Christou V, Fokianos K (2014) Quasi-likelihood inference for negative binomial time series models. J Time Ser Anal 35:55–78

    Article  MathSciNet  Google Scholar 

  • Dicker L, Huang B, Lin X (2013) Variable selection and estimation with the seamless-L0 penalty. Stat Sin 23:929–962

    MATH  Google Scholar 

  • Doukhan P, Fokianos K, Tjøstheim D (2012) On weak dependence conditions for Poisson autoregressions. Stat Probab Lett 82:942–948

    Article  MathSciNet  Google Scholar 

  • Du JG, Li Y (1991) The integer-valued autoregressive (INAR(\(p\))) model. J Time Ser Anal 12:129–142

    Article  MathSciNet  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  Google Scholar 

  • Ferland R, Latour A, Oraichi D (2006) Integer-valued GARCH process. J Time Ser Anal 27:923–942

    Article  MathSciNet  Google Scholar 

  • Fokianos K, Rahbek A, Tjøstheim D (2009) Poisson autoregression. J Am Stat Assoc 104:1430–1439

    Article  MathSciNet  Google Scholar 

  • Fokianos K, Fried R (2010) Interventions in INGARCH Processes. J Time Ser Anal 3:210–225

    Article  MathSciNet  Google Scholar 

  • Fokianos K (2011) Some recent progress in count time series. Statistics 45:49–58

    Article  MathSciNet  Google Scholar 

  • Fokianos K (2012) Count time series models. Handb Stat 30:315–347

    Article  Google Scholar 

  • Jung RC, Tremayne AR (2006) Coherent forecasting in integer time series models. Int J Forecast 22:223–238

    Article  Google Scholar 

  • Kim HY, Park Y (2008) A non-stationary integer-valued autoregressive model. Stat Pap 49:485

    Article  MathSciNet  Google Scholar 

  • Li H, Yang K, Wang D (2017) Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes. Comput Stat 32:1597–1620

    Article  MathSciNet  Google Scholar 

  • Li H, Yang K, Wang D (2019) A threshold stochastic volatility model with explanatory variables. Stat Neerl 73:118–138

    Article  MathSciNet  Google Scholar 

  • Ling S (2007) Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models. J Econ 140:849–873

    Article  MathSciNet  Google Scholar 

  • MacDonald IL, Bhamani F (2018) A time-series model for underdispersed or overdispersed counts. Am Stat. https://doi.org/10.1080/00031305.2018.1505656

    Article  Google Scholar 

  • Nardi Y, Rinaldo A (2011) Autoregressive process modeling via the lasso procedure. J Multivar Anal 102:528–549

    Article  MathSciNet  Google Scholar 

  • Neal P, Subba Rao T (2007) MCMC for integer-valued ARMA processes. J Time Ser Anal 28:92–110

    Article  MathSciNet  Google Scholar 

  • Niaparast M, Schwabe R (2013) Optimal design for quasi-likelihood estimation in Poisson regression with random coefficients. J Stat Plan Inference 143:296–306

    Article  MathSciNet  Google Scholar 

  • Silva ME, Pereira I (2015) Detection of additive outliers in Poisson INAR(1) time series. Mathematics of energy and climate change. Springer, Cham, pp 377–388

    Chapter  Google Scholar 

  • Steutal F, Van Harn K (1979) Discrete analogues of self-decomposability and stability. Ann Prob 7:893–899

    MathSciNet  MATH  Google Scholar 

  • Straumann D, Mikosch T (2006) Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach. Ann Stat 34:2449–2495

    Article  MathSciNet  Google Scholar 

  • Tjøstheim D (2012) Some recent theory for autoregressive count time series. Test 21:413–438

    Article  MathSciNet  Google Scholar 

  • Wang H, Li R, Tsai CL (2007) Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94:553–568

    Article  MathSciNet  Google Scholar 

  • Wang H, Li G, Tsai CL (2007) Regression coefficient and autoregressive order shrinkage and selection via the lasso. J R Stat Soc Ser B 69:63–78

    MathSciNet  Google Scholar 

  • Wang X, Wang D, Zhang H (2017) Poisson autoregressive process modeling via the penalized conditional maximum likelihood procedure. Stat Pap. https://doi.org/10.1007/s00362-017-0938-0

    Article  MATH  Google Scholar 

  • Weiß CH (2008) Thinning operations for modeling time series of counts—a survey. AStA Adv Stat Anal 92:319

    Article  MathSciNet  Google Scholar 

  • Wedderburn RWM (1974) Quasi-likelihood functions, generalized linear models, and the Gauss–Newton method. Biometrika 61:439–447

    MathSciNet  MATH  Google Scholar 

  • Westgren A (1916) Die Veränderungsgeschwindigkeit der lokalen Teilchenkonzentration in kollioden Systemen (Erste Mitteilung). Arkiv f\(\ddot{o}\)r Matematik Astronomi och Fysik 11:1–24

  • Yang K, Li H, Wang D (2018) Estimation of parameters in the self-exciting threshold autoregressive processes for nonlinear time series of counts. Appl Math Model 57:226–247

    Article  MathSciNet  Google Scholar 

  • Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38:894–942

    Article  MathSciNet  Google Scholar 

  • Zhang H, Wang D, Sun L (2017) Regularized estimation in GINAR(\(p\)) process. J Korean Stat Soc 46:502–517

    Article  MathSciNet  Google Scholar 

  • Zou H (2006) The adaptive LASSO and its oracle properties. J Am Stat Assoc 101:1418–1429

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the editors and two reviewers for their valuable suggestions and comments which greatly improved the article. This work is supported by the National Natural Science Foundation of China (No. 11731015, 11571051, J1310022, 11501241, 11901053), Natural Science Foundation of Jilin Province (No. 20150520053JH, 20170101057JC, 20180101216JC), Program for Changbaishan Scholars of Jilin Province (2015010), and Science and Technology Program of Jilin Educational Department during the 13th Five-Year Plan Period (No. 2016-399), Natural Science Foundation of Liaoning Province, China (No. 2019MS285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 85 KB)

Appendix

Appendix

To prove the asymptotic properties of the PMQL estimator, we need the following regularity conditions.

  1. (C.1)

    \(0<\sum ^p_{i=1}\alpha _i<1\);

  2. (C.2)

    \(\mathrm {E}|X_t|^4<\infty \);

  3. (C.3)

    \(a_n=O(n^{-1/2})\);

  4. (C.4)

    \(b_n=o(1)\).

(C.1) ensures that the sequence \(\{X_t\}\) is strictly stationary and ergodic; (C.2) guarantees that the PMQL estimator possesses asymptotic properties; According to (C.3) and (C.4), the PMQL criterion function is dominated by the quasi-likelihood criterion function and ensure that the PMQL estimator is \(\sqrt{n}\) consistent and asymptotically normal. To prove Theorem 2.1, the following lemma is needed.

Lemma A1

Under conditions (C.1)–(C.2), as \(n\rightarrow \infty \) we have

$$\begin{aligned} \frac{1}{\sqrt{n}}S_n(\varvec{\beta }_{0})\mathop {\longrightarrow } \limits ^\mathrm{D}\mathrm {N}(\mathbf{0 },\varvec{\Sigma }(\varvec{\beta }_{0})), \end{aligned}$$

and \(S_{n}(\varvec{\beta }_{0})\) is defined in (2).

Proof of Lemma A1

Assuming that \(\varvec{\theta }\) is known, we set \({\mathcal {F}}_{n-1}=\sigma \left\{ X_{0},X_{1},\ldots ,X_{p}\right\} \), for

$$\begin{aligned} S_{n}^{(1)}(\varvec{\beta })=\sum ^{n}_{t=1}V_{\varvec{\theta }}^{-1} \left( X_{t}|X_{t-1},\ldots ,X_{t-p}\right) \left( X_{t}-\sum ^{p}_{j=1} \alpha _{j}X_{t-j}-\mu \right) X_{t-1}, \end{aligned}$$

calculating the conditional expectation we have

$$\begin{aligned}&\mathrm {E}\left( V_{\varvec{\theta }}^{-1}\left( X_{t}|X_{t-1},\ldots ,X_{t-p} \right) \left( X_{t}-\sum ^{p}_{j=1}\alpha _{j}X_{t-j}-\mu \right) X_{t-1} \big |{\mathcal {F}}_{n-1}\right) \\ =&V_{\varvec{\theta }}^{-1}\left( X_{t}|X_{t-1},\ldots ,X_{t-p}\right) \mathrm {E} \left( \left( X_{t}-\sum ^{p}_{j=1}\alpha _{j}X_{t-j}-\mu \right) X_{t-1} \big |{\mathcal {F}}_{n-1}\right) \\ =&0, \end{aligned}$$

then

$$\begin{aligned} \mathrm {E}\left( S_{n}^{(1)}(\varvec{\beta })\big |{\mathcal {F}}_{n-1} \right) =S_{n-1}^{(1)}(\varvec{\beta }), \end{aligned}$$

that means \(\left\{ S_{n}^{(1)}(\varvec{\beta }),{\mathcal {F}}_{n},n\ge 0\right\} \) is a martingale. By \(\mathrm {E}|X_{t}|^{4}<\infty \), the strict stationarity of \(\{X_{t}\}\) and the ergodic theorem, we can derive that

$$\begin{aligned} \frac{1}{n}\sum ^{n}_{t=1}&V_{\varvec{\theta }}^{-2}\left( X_{t}|X_{t-1}, \ldots ,X_{t-p}\right) \left( X_{t}-\sum ^{p}_{j=1}\alpha _{j}X_{t-j} -\mu \right) ^{2}X_{t-1}^{2}\mathop {\longrightarrow }\limits ^{a.s.}\\&\mathrm {E}\left( V_{\varvec{\theta }}^{-2}\left( X_{p}|X_{p-1}, \ldots ,X_{0}\right) \left( X_{t}-\sum ^{p}_{j=1}\alpha _{j}X_{p-j} -\mu \right) ^{2}X_{p-1}^{2}\right) \\ =&\mathrm {E}\left( V_{\varvec{\theta }}^{-1}\left( X_{p}|X_{p-1}, \ldots ,X_{0}\right) X_{p-1}^{2}\right) =\sigma _{11}. \end{aligned}$$

Following the martingale central limit theorem, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}S_{n}^{(1)}(\varvec{\beta })\mathop {\longrightarrow } \limits ^\mathrm {D}\mathrm {N}(0,\sigma _{11}). \end{aligned}$$

Similarly, we can prove \(\left\{ S_{n}^{(i)}(\varvec{\beta }), {\mathcal {F}}_{n},n\ge 0\right\} \), \(i=2,3,\ldots ,p+1\) is a martingale and

$$\begin{aligned} \frac{1}{\sqrt{n}}S_{n}^{(i)}(\varvec{\beta })\mathop {\longrightarrow } \limits ^\mathrm{D}\mathrm {N}(0,\sigma _{ii}). \end{aligned}$$

For any \(\mathbf{c }=(c_{1},c_{2},\ldots ,c_{p+1})^{\mathrm {\textsf {T}}} \in {\mathbb {R}}^{p+1}\backslash (0,\ldots ,0)^{\mathrm {\textsf {T}}}\),

$$\begin{aligned} \frac{1}{\sqrt{n}}\mathbf{c }^{\mathrm {\textsf {T}}}\begin{pmatrix} S_{n}^{(1)}(\varvec{\beta })\\ \vdots \\ S_{n}^{(p+1)}(\varvec{\beta }) \end{pmatrix}=&\frac{1}{\sqrt{n}}\sum ^{n}_{t=1}V_{\varvec{\theta }}^{-1} \left( X_{t}|X_{t-1},\ldots ,X_{t-p}\right) \left( X_{t}-\sum ^{p}_{j=1}\alpha _{j}X_{t-j} -\mu \right) \\&\cdot \left( c_{1}X_{t-1}+\cdots +c_{p}X_{t-p}+c_{p+1}\right) \\&\mathop {\longrightarrow }\limits ^\mathrm{D}\mathrm {N} \left( \mathbf{0 },\mathrm {E} \left[ V_{\varvec{\theta }}^{-1}\left( X_{t}|X_{t-1},\ldots ,X_{t-p}\right) \left( c_{1}X_{t-1}+\cdots +c_{p}X_{t-p}+c_{p+1}\right) ^{2}\right] \right) . \end{aligned}$$

As \(n\rightarrow \infty \), according to the Cramér–Wold device we have:

$$\begin{aligned} \frac{1}{\sqrt{n}}\begin{pmatrix} S_{n}^{(1)}(\varvec{\beta })\\ \vdots \\ S_{n}^{(p+1)}(\varvec{\beta }) \end{pmatrix}\mathop {\longrightarrow }\limits ^\mathrm{D}\mathrm {N}(\mathbf{0 }, \varvec{\Sigma }(\varvec{\beta })). \end{aligned}$$

Next, we replace \(V_{\varvec{\theta }}\left( X_{t}|X_{t-1},\ldots ,X_{t-p}\right) \) by \(V_{\varvec{{\bar{\theta }}}}\left( X_{t}|X_{t-1},\ldots ,X_{t-p}\right) \), where \(\varvec{{\bar{\theta }}}\) is a consistent estimator of \(\varvec{\theta }\), to prove

$$\begin{aligned} \frac{1}{\sqrt{n}}\begin{pmatrix} {\hat{S}}_{n}^{(1)}(\varvec{\beta })\\ \vdots \\ {\hat{S}}_{n}^{(p+1)}(\varvec{\beta }) \end{pmatrix}\mathop {\longrightarrow }\limits ^\mathrm{D}\mathrm {N}(\mathbf{0 }, \varvec{\Sigma }(\varvec{\beta })). \end{aligned}$$
(11)

To prove (11) holds, we need prove

$$\begin{aligned} \left( \frac{1}{\sqrt{n}}{\hat{S}}_{n}^{(i)}(\varvec{\beta }) -\frac{1}{\sqrt{n}}S_{n}^{(i)}(\varvec{\beta })\right) \mathop {\longrightarrow }\limits ^{\mathrm {P}}0,~i=1,2,\ldots ,p+1. \end{aligned}$$
(12)

We set \(R_{n}(\varvec{\theta })=(1/\sqrt{n})S_{n}^{(1)}(\varvec{\beta })\), for any \(\epsilon >0\) and \(\delta >0\)

$$\begin{aligned} \mathrm {P}\left( \big |R_{n}(\varvec{{\hat{\theta }}})-R_{n} (\varvec{\theta })\big |>\epsilon \right) \le&\sum ^{p}_{i=1}\mathrm {P} \left( |{\hat{\theta }}_{i}-\theta _{i}|>\delta \right) +\mathrm {P} \left( \big |{\hat{\delta }}_{z}^{2}-\delta ^{2}_{z}\big |>\delta \right) \\&+\mathrm {P}\left( \sup \limits _{D}\big |R_{n}(\varvec{\theta }_{1}) -R_{n}(\varvec{\theta })\big |>\epsilon \right) , \end{aligned}$$

where \(\varvec{\theta }_{1}=(\sigma _{11}^{2}, \ldots ,\sigma _{p1}^{2},\sigma ^{2}_{1})^{\mathrm {\textsf {T}}}\), \(D\triangleq \left\{ |\sigma ^{2}_{i1}-\sigma ^2_{i}|<\delta ,1\le i\le p,|\sigma ^{2}_{1} -\sigma ^{2}_{z}|<\delta \right\} \). If \(\varvec{{\bar{\theta }}}\) is a consistent estimator of \(\varvec{\theta }\), we only need to prove

$$\begin{aligned} \mathrm {P}\left( \sup \limits _{D}\big |R_{n}(\varvec{\theta }_{1})-R_{n} (\varvec{\theta })\big |>\epsilon \right) \mathop {\longrightarrow } \limits ^{\mathrm {P}}0. \end{aligned}$$

By Markov inequation, we have

$$\begin{aligned}&\mathrm {P}\left( \sup \limits _{D}\big |R_{n}(\varvec{\theta }_{1}) -R_{n}(\varvec{\theta })\big |>\epsilon \right) \nonumber \\&\le \frac{1}{\epsilon ^{2}}\mathrm {E}\left( \sup \limits _{D}(R_{n} (\varvec{\theta }_{1})-R_{n}(\varvec{\theta }))^{2}\right) \nonumber \\&=\frac{1}{\epsilon ^{2}}\mathrm {E}\left( \sup _{D}\frac{1}{n}\sum ^{n}_{t=1} \left( V_{\varvec{\theta }_{1}}^{-1}\left( X_{t}|X_{t-1},\ldots ,X_{t-p}\right) -V_{\varvec{\theta }}^{-1}\left( X_{t}|X_{t-1},\ldots ,X_{t-p}\right) \right) ^{2} \left( X_{t}-\sum ^{p}_{j=1}\alpha _{j}X_{t-j}-\mu \right) ^{2}X_{t-1}^{2}\right) \nonumber \\&=\frac{1}{\epsilon ^{2}}\mathrm {E}\left( \sup _{D} \left( V_{\varvec{\theta }_{1}}^{-1}\left( X_{p}|X_{p-1},\ldots ,X_{0}\right) -V_{\varvec{\theta }}^{-1}\left( X_{p}|X_{p-1},\ldots ,X_{0}\right) \right) ^{2} \left( X_{p}-\sum ^{p}_{j=1}\alpha _{j}X_{p-j}-\mu \right) ^{2}X_{p-1}^{2}\right) \nonumber \\&=\frac{1}{\epsilon ^{2}}\mathrm {E}\left( \sup _{D}\frac{\left( \sum ^{p}_{i=1}| \sigma ^{2}_{i1}-\sigma ^2_{i}||X_{p-i}|+(\sigma ^{2}_{1}-\sigma ^{2}_{z})\right) ^{2}}{V^{2}_{\varvec{\theta }_{1}}\left( X_{p}|X_{p-1},\ldots ,X_{0} \right) V^{2}_{\varvec{\theta }}\left( X_{p}|X_{p-1},\ldots ,X_{0}\right) } \left( X_{p}-\sum ^{p}_{j=1}\alpha _{j}X_{p-j}-\mu \right) ^{2}X_{p-1}^{2}\right) \nonumber \\&=\frac{1}{\epsilon ^{2}}\mathrm {E}\left( \sup _{D}\frac{\left( \sum ^{p}_{i=1}| \sigma ^{2}_{i1}-\sigma ^2_{i}||X_{p-i}|+(\sigma ^{2}_{1}-\sigma ^{2}_{z})\right) ^{2}}{V^{2}_{\varvec{\theta }_{1}}\left( X_{p}|X_{p-1},\ldots ,X_{0}\right) V_{\varvec{\theta }}\left( X_{p}|X_{p-1},\ldots ,X_{0}\right) }X_{p-1}^{2} \right) \nonumber \\&\le \frac{1}{\epsilon ^{2}}\mathrm {E}\left( \sup _{D}\frac{\left( \sum ^{p}_{i=1} \delta |X_{p-i}|+\delta \right) ^{2}}{(\sigma ^{2}_{z}-\delta )^{2}\sigma ^{2}_{z}} X_{p-1}^{2}\right) \nonumber \\&\le \frac{c\delta ^{2}}{\epsilon ^{2}.} \end{aligned}$$
(13)

where c is a finite positive constant. \(\frac{1}{\sqrt{n}}S_{n}^{(i)}(\varvec{\beta }),~i=2,\ldots ,p+1\) can be discussed similarly. As \(\delta \rightarrow 0\), the result holds up. \(\square \)

Proof of Theorem 2.1

By Lemma A1 and Theorem 1 of Wang et al. (2017), the result can be derived directly. \(\square \)

Proof of Lemma 2.1

The relevant proofs are similar to Lemma 1 of Wang et al. (2017). Hence, detailed proofs are omitted here. \(\square \)

Proof of Theorem 2.2

The proofs are similar to Theorem 2 of Wang et al. (2017). We omit here. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, D. & Yang, K. Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach. Metrika 84, 713–750 (2021). https://doi.org/10.1007/s00184-020-00799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-020-00799-7

Keywords

Navigation