Skip to main content

Advertisement

Log in

New efficient spline estimation for varying-coefficient models with two-step knot number selection

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

One of the advantages for the varying-coefficient model is to allow the coefficients to vary as smooth functions of other variables and the coefficients functions can be estimated easily through a simple B-spline approximations method. This leads to a simple one-step estimation procedure. We show that such a one-step method cannot be optimal when some coefficient functions possess different degrees of smoothness. Under the regularity conditions, the consistency and asymptotic normality of the two step B-spline estimators are also derived. A few simulation studies show that the gain by the two-step procedure can be quite substantial. The methodology is illustrated by an AIDS data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal GG, Studden WJ (1980) Asymptotic integrated mean square error using least squares and bias minimizing spline. Ann Stat 8:1307–1325

    Article  MathSciNet  Google Scholar 

  • Cai Z (2002) Two-step likelihood estimation procedure for varying-coefficient models. J Multivar Anal 82:189–209

    Article  MathSciNet  Google Scholar 

  • Cai Z, Sun Y (2003) Local linear estimation for time-dependent coefficients in Coxs regression models. Scand J Stat 30:93–11

    Article  MathSciNet  Google Scholar 

  • Cai Z, Fan J, Li R (2000) Efficient estimation and inferences for varying-coefficient models. J Am Stat Assoc 95:888–902

    Article  MathSciNet  Google Scholar 

  • Chiang CT, Rice JA, Wu CO (2001) Smoothing spline estimation for varying coefficient models with repeatedly measured dependent variables. J Am Stat Assoc 96:605–619

    Article  MathSciNet  Google Scholar 

  • DeBoor C (1978) A practical guide to splines. Springer, New York

    Book  Google Scholar 

  • Eubank RL, Huang C, Maldonado YM et al (2004) Smoothing spline estimation in varying-coefficient models. J R Stat Soc Ser B 66:653–667

    Article  MathSciNet  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  MathSciNet  Google Scholar 

  • Fan J, Li R (2004) New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. J Am Stat Assoc 99:710–723

    Article  MathSciNet  Google Scholar 

  • Fan J, Zhang W (1999) Statistical estimation in varying coefficient models. Ann Stat 27:1491–1518

    Article  MathSciNet  Google Scholar 

  • Fan J, Zhang W (2000) Simultaneous confidence bands and hypothesis testing in varying-coefficient models. Scand J Stat 27:715–731

    Article  MathSciNet  Google Scholar 

  • Fan J, Zhang W (2008) Statistical methods with varying coefficient models. Stat Interface 1:179–195

    Article  MathSciNet  Google Scholar 

  • Ferguson C, Bowman A, Scott E, Carvalho L (2007) Model comparison for a complex ecological system. J R Stat Soc Ser A 170:691–711

    Article  MathSciNet  Google Scholar 

  • Finley A (2011) Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence. Methods Ecol Evol 2:143–154

    Article  Google Scholar 

  • Gelfand A, Kim J, Sirmans C, Banerjee S (2003) Spatial modeling with spatially varying coefficient processes. J Am Stat Assoc 98:387–396

    Article  MathSciNet  Google Scholar 

  • Hastie T, Tibshirani R (1993) Varying-coefficient models. J R Stat Soc Ser B 55:757–796

    MathSciNet  MATH  Google Scholar 

  • He XM, Shi P (1994) Convergence rate of b-spline estimators of nonparametric conditional quantile functions. J Nonparametr Stat 3:299–308

    Article  MathSciNet  Google Scholar 

  • Hoover D, Rice J, Wu C (1998) Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85:809–822

    Article  MathSciNet  Google Scholar 

  • Hu L, Huang T, You J (2019) Estimation and identification of a varying-coefficient additive model for locally stationary processes. J Am Stat Assoc 114:1191–1204

    Article  MathSciNet  Google Scholar 

  • Huang JZ, Wu CO, Zhou L (2002) Varying-coefficient models and basis function approximations for the analysis of the analysis of repeated measurements. Biometrika 89:111–128

    Article  MathSciNet  Google Scholar 

  • Ip WC, Wong H, Zhang R (2007) Generalized likelihood ratio test for varying-coefficient models with different smoothing variables. Comput Stat Data Anal 51:4543–4561

    Article  MathSciNet  Google Scholar 

  • Leng C (2009) A simple approach for varying-coefficient model selection. J Stat Plan Inference 139:2138–2146

    Article  MathSciNet  Google Scholar 

  • Lu YQ, Mao SS (2006) Local asymptotics for B-spline estimators of the varying coefficient model. Commun Stat-Theory Methods 33:1119–1138

    Article  MathSciNet  Google Scholar 

  • Mu J, Wang G, Wang L (2018) Estimation and inference in spatially varying coefficient models. Environmetrics 29:e2485

    Article  MathSciNet  Google Scholar 

  • Schumaker LL (1981) Spline functions. Wiley, New York

    MATH  Google Scholar 

  • Tang QG, Cheng LS (2008) M-estimation and B-spline approximation for varying coefficient models with longitudinal data. J Nonparametr Stat 20:611–625

    Article  MathSciNet  Google Scholar 

  • Tian L, Zucker D, Wei L (2005) On the Cox model with time-varying regression coefficients. J Am Stat Assoc 100:172–183

    Article  MathSciNet  Google Scholar 

  • Wang HS, Xia YC (2009) Shrinkage estimation of the varying coefficient model. J Am Stat Assoc 104:747–757

    Article  MathSciNet  Google Scholar 

  • Wang L, Li H, Huang JZ (2008) Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. J Am Stat Assoc 103:1556–1569

    Article  MathSciNet  Google Scholar 

  • Xue LG, Zhu LX (2007a) Empirical likelihood for a varying coefficient model with longitudinal data. J Am Stat Assoc 102:642–652

    Article  MathSciNet  Google Scholar 

  • Xue LG, Zhu LX (2007b) Empirical likelihood semiparametric regression analysis for longitudinal data. Biometrika. 94:921–937

    Article  MathSciNet  Google Scholar 

  • Zhang W, Lee SY (2000) Variable bandwidth Selection in varying-coefficient models. J Multivar Anal 74:116–134

    Article  MathSciNet  Google Scholar 

  • Zhao PX, Xue LG (2009) Variable selection for semiparametric varying coefficient partially linear models. Stat Probab Lett 79:2148–2157

    Article  MathSciNet  Google Scholar 

  • Zhou S, Shen X, Wolfe DA (1998) Local asymptotics for regression spline and confidence regions. Ann Stat 26:1760–1782

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the Editor and referees very much for their constructive comments which led an improved manuscript. We are very grateful to Drs. J.Z. Huang C. O. Wu and L. Zhou for allowing us to use the dataset “MACS Public Use Data Set Release PO4 (1984–1991)”. This research was supported by the National Natural Science Foundation of China (#11471264, #11361015) and the Fundamental Research Funds for the Central Universities (#JBK1806 002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of theorems

Appendix: Proof of theorems

It will be convenient to introduce the following notation

$$\begin{aligned} \beta (u)= & {} {({\beta _1}(u),{\beta _2}(u), \ldots ,{\beta _p}(u))^T},\,U = {({u_1},{u_2} \ldots ,{u_n})^T}, \\ {s_j}(u)= & {} \pi _j^T(u){\alpha _j},\,s(u) = {({s_1}(u),{s_2}(u), \ldots ,{s_p}(u))^T}, \\ B(U)= & {} {({\beta ^T}({u_1}),{\beta ^T}({u_2}), \ldots ,{\beta ^T}({u_n}))^T},\,S(U) = {({s^T}({u_1}),{s^T}({u_2}), \ldots ,{s^T}({u_n}))^T}, \\ {\alpha _j}= & {} {({\alpha _{j1}},{\alpha _{j2}}, \ldots ,{\alpha _{j{N_j}}})^T},\,\alpha = {(\alpha _1^T,\alpha _2^T, \ldots ,\alpha {}_p^T)^T}, \\ \!\!X= & {} {({x_1},{x_2},\! \ldots ,\!{x_p})^T},\,{X_i} \!=\! ({x_{i1}},{x_{i2}}, \ldots ,{x_{ip}})^{T},\,{D_x} \!=\! diag(X_1^T,X_2^T, \ldots ,X_n^T), \\ \!\!\!\pi (u) \!= & {} \!\! {\left( {\begin{array}{*{20}{c}} {\pi _1^T(u)}&{}\quad 0&{}\quad \ldots &{}\quad 0\\ 0&{}\quad {\pi _2^T(u)}&{}\quad \ldots &{}\quad 0\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ 0&{}\quad 0&{}\quad \ldots &{}\quad {\pi _p^T(u)}\end{array}} \right) },\, \pi _{j}(u)\!=\!(\pi _{j1}(u),\!\pi _{j2}(u),\!\ldots ,\!\pi _{jN_{j}}(u))^{T}, \end{aligned}$$

where \(i=1,2,\ldots ,n\), \(j=1,2,\ldots ,p\), then \(D=D_x\cdot (\pi (u_1),\pi (u_2),\ldots ,\pi (u_n))^{T}\). \(\lambda _{\max }^A\) and \(\lambda _{\min }^A\) are, respectively , the maximum and minimum eigenvalue of A. \(I_p\) is \(p\times p\) unit matrix. \(Q_n(x,u)\) is the empirical distribution of \((X_i,u_i)_{i=1}^{n}\). \(Q_n(x|u)\) is the conditional empirical distribution, \(Q_n(u)\) is the marginal empirical distribution.

Lemma 1

There exists constants \(0<c'_{1}<c'_{2}<\infty \) (independent of n and \(k_j\)) such that

$$\begin{aligned} ({{c'}_1} + {o_p}(1))h{\left\| \alpha \right\| ^2} \le \int {{s^T}(u)} s(u){d{{Q_n}(u)}} \le ({{c'}_2} + {o_p}(1))h{\left\| \alpha \right\| ^2}. \end{aligned}$$
(A.1)

Proof

By the Lemma 6.1 of Zhou et al. (1998) , there exists the constants \(0<c'_{1}<c'_{2}<\infty \) (independent of n and \(k_j\)) such that

$$\begin{aligned} ({{c'}_1} + {o_p}(1))h\sum \limits _{l = 1}^{{N_j}} {\alpha _{jl}^2} \le \int {s_j^2(u)} {d{{Q_n}(u)}} \le ({{c'}_2} + {o_p}(1))h\sum \limits _{l = 1}^{{N_j}} {\alpha _{jl}^2}. \end{aligned}$$

Hence

$$\begin{aligned} ({{c'}_1} + {o_p}(1))h\sum \limits _{j = 1}^p {\sum \limits _{l = 1}^{{N_j}} {\alpha _{jl}^2} } \le \int {\sum \limits _{j = 1}^p {s_j^2(u)} d{Q_n}(u)} \le ({{c'}_2} + {o_p}(1))h\sum \limits _{j = 1}^p {\sum \limits _{l = 1}^{{N_j}} {\alpha _{jl}^2} }, \end{aligned}$$

This is, (A.1) holds. \(\square \)

Lemma 2

If condition C3 holds, there exists the constants \(0<c_1<c_2<\infty \) (independent of n and \(k_j)\) such that

$$\begin{aligned} ({c_1} + {o_p}(1))nh \le \lambda _{\min }^{{D^T}D} \le \lambda _{\max }^{{D^T}D} \le ({c_2} + {o_p}(1))nh. \end{aligned}$$
(A.2)

Proof

By

$$\begin{aligned} \begin{array}{l} D\alpha = {D_x}\cdot {(\pi ({u_1}),\pi ({u_2}), \ldots ,\pi ({u_n}))^T} {(\alpha _1^T,\alpha _2^T, \ldots ,\alpha _p^T)^T}\\ \begin{array}{*{20}{c}} {}&{} = \end{array}{D_x}\cdot {({\pi ^T}({u_1}){\alpha _1}, \ldots ,{\pi ^T}({u_1}) {\alpha _P}, \ldots ,{\pi ^T}({u_n}){\alpha _1}, \ldots ,{\pi ^T}({u_n}) {\alpha _P})^T}\\ \begin{array}{*{20}{c}} {}&{} = \end{array}{D_x}\cdot {({s_1}({u_1}), \ldots ,{s_p}({u_1}), \ldots ,{s_1} ({u_n}), \ldots ,{s_p}({u_n}))^T}. \end{array} \end{aligned}$$

Hence

$$\begin{aligned} \displaystyle \begin{array}{l} {\alpha ^T}{D^T}D\alpha = \displaystyle \sum \limits _{i = 1}^n {{s^T}({u_i}) {X_i}X_i^Ts({u_i})} \\ \begin{array}{*{20}{c}} {}&{}{}&{}{} \end{array} = n\displaystyle \int {{s^T}(u)XX_{}^Ts(u)d{Q_n}(x,u)} \\ \begin{array}{*{20}{c}} {}&{}{}&{}{} \end{array} = n\displaystyle \int {{s^T}(u) \cdot \displaystyle \int {XX_{}^Td{Q_n}(x|u) \cdot s(u)d{Q_n}(u)} }. \end{array} \end{aligned}$$
(A.3)

By condition C3,

$$\begin{aligned} \displaystyle \int {{X^T}Xd{Q_n}(x|u)}{\mathop {\longrightarrow }\limits ^{p}}\displaystyle \int {X{X^T}d{Q_n}(x|u)} = G(u). \end{aligned}$$

From (A.3),

$$\begin{aligned} \begin{array}{l} {\alpha ^T}{D^T}D\alpha = n\displaystyle \int {{s^T}(u) \cdot \left[ G(u) + {o_p}(1)\right] \cdot s(u)d{Q_n}(u)} \\ \begin{array}{*{20}{c}} {}&{}{}&{}{}{} \end{array} = n\displaystyle \int {{s^T}(u)G(u)s(u)d{Q_n}(u)} + \left[ {n\displaystyle \int {{s^T}(u)s(u)d{Q_n}(u)} } \right] {o_p}(1). \end{array} \end{aligned}$$
(A.4)

From (3.2),

$$\begin{aligned} {m_3}\int {{s^T}(u)s(u)d{Q_n}(u) \le } \int {{s^T}(u)G(u)s(u)d{Q_n}(u)} \le {M_3}\int {{s^T}(u)s(u)d{Q_n}(u)}. \end{aligned}$$

By Lemma 1 and (A.4)

$$\begin{aligned} ({m_3} \!+\! {o_p}(1))({{c'}_1} \!+\! o_p(1))nh{\left\| \alpha \right\| ^2} \!\le \! {\alpha ^T}{D^T}D\alpha \le ({M_3} \!+\! {o_p}(1))({{c'}_2} \!+\! {o_p}(1))nh{\left\| \alpha \right\| ^2}. \end{aligned}$$

Let \(c_1=c'_1m_3\), \(c_2=c'_2M_3\), we have

$$\begin{aligned} ({c_1} + o_p(1))nh{\left\| \alpha \right\| ^2} \le {\alpha ^T}{D^T}D\alpha \le ({c_2} + {o_p}(1))nh{\left\| \alpha \right\| ^2}. \end{aligned}$$

Note that

$$\begin{aligned} \lambda _{\max }^{{D^T}D} = \mathop {\max }\limits _{\left\| \alpha \right\| = 1} {\alpha ^T}{D^T}D\alpha ,\ \lambda _{\min }^{{D^T}D} = \mathop {\min }\limits _{\left\| \alpha \right\| = 1} {\alpha ^T}{D^T}D\alpha , \end{aligned}$$

(A.2) holds.

By Lemma 2, we also know that

$$\begin{aligned} \left( {\frac{1}{{{c_2}}} + {o_p}(1)} \right) {(nh)^{ - 1}} \le \lambda _{\min }^{{{({D^T}D)}^{ - 1}}} \le \lambda _{\max }^{{{({D^T}D)}^{ - 1}}} \le \left( {\frac{1}{{{c_1}}} + {o_p}(1)} \right) {(nh)^{ - 1}}. \end{aligned}$$
(A.5)

\(\square \)

Lemma 3

If A and B are nonnegative matrices, then

$$\begin{aligned} \lambda _{\min }^Atr(AB) \le tr(AB) \le \lambda _{\max }^Atr(AB) \end{aligned}$$

Proof

The strategy to prove this lemma is similar to Lemma 6.5 of Zhou et al. (1998). Therefore, we omit the proof. \(\square \)

Lemma 4

If conditions C1 and C2 hold, then there exits a constant \(M_5\) such that

$$\begin{aligned} \mathop {\sup }\limits _{u \in [a,b]} \left| {{\beta _j}(u) - \pi _j^T(u){\alpha _j}} \right| \le {M_5}{h^m}, \end{aligned}$$
(A.6)

\(j=1,2,\ldots ,p\), where \(\alpha _j\) is a \(N_j \times 1\) vector depending on \(\beta _j(u).\)

Proof

Lemma 4 proof follows readily from Corollary 6.21 of Schumaker (1981). \(\square \)

Proof of Theorem 1

By (2.9), then

$$\begin{aligned} {E_\chi }({{\hat{\beta }}} (u)) = {\pi ^T }(u) \cdot {({D^T }D)^{ - 1}}{D^T }{D_x}\mathrm{B}(U), \end{aligned}$$

where \(\chi =(X_i,u_i)^n_{i=1}\) and \({E_\chi }\) denotes the conditional expectation given \(\chi \). So

$$\begin{aligned} \begin{array}{llll} &{}{E_\chi }({{\hat{\beta }}} (u)) - s(u)\\ &{}\quad = {\pi ^T}(u) \cdot {({D^T}D)^{ - 1}}{D^T}{D_x}\mathrm{B}(U) - {\pi ^T}(u) \cdot {({D^T}D)^{ - 1}}({D^T}D)\alpha \\ &{}\quad = {\pi ^T}(u) \cdot {({D^T}D)^{ - 1}}{D^T}{D_x}\mathrm{B}(U) - {\pi ^T}(u) \cdot {({D^T}D)^{ - 1}}{D^T}{D_x}S(U)\\ &{}\quad = {\pi ^T}(u) \cdot {({D^T}D)^{ - 1}} \cdot {D^T}{D_x}(B(U) - S(U)), \end{array} \end{aligned}$$
(A.7)

on the other hand,

$$\begin{aligned} \begin{array}{llllll} &{}{D^T}{D_x}(B(U) - S(U))\\ &{}\quad = (\pi ({u_1}),\pi ({u_{\mathrm{{2}}}}), \ldots ,\pi ({u_n}))D_x^T \cdot D{}_x(B(U) - S(U))\\ &{}\quad = \pi ({u_1}) \cdot {X_1}X_1^T \cdot (\beta ({u_1}) - s({u_1})) + \cdots + \pi ({u_n}) \cdot {X_n}X_n^T \cdot (\beta ({u_n}) - s({u_n}))\\ &{}\quad = n\displaystyle \frac{1}{n}\displaystyle \sum \limits _{i = 1}^n {\pi ({u_i}) \cdot {X_i}X_i^T \cdot (\beta ({u_i}) - s({u_i}))} \\ &{}\quad = n\displaystyle \int {\pi (u) \cdot X{X^T} \cdot (\beta (u) - s(u))} d{Q_n}(x,u)\\ &{}\quad = n\displaystyle \int {\pi (u) \cdot \displaystyle \int {X{X^T}} } d{Q_n}(x|u) \cdot (\beta (u) - s(u))d{Q_n}(u)\\ &{}\quad = n\displaystyle \int {\pi (u)} \cdot (G(u) + {o_p}(1)) \cdot (\beta (u) - s(u))d{Q_n}(u). \end{array} \end{aligned}$$
(A.8)

Let \(\eta (u) = G(u)(\beta (u) - s(u)) = {({\eta _1}(u), \ldots ,{\eta _p}(u))^T }\) and \({\eta _i}(u) = \sum \nolimits _{j = 1}^p {{g_{ij}}} (u)({\beta _j}(u) - {s_j}(u)),\ i=1,2\ldots ,p\). Then, \(\pi (u)G(u)(\beta (u) - s(u)) = \pi (u)\eta (u),\) by (3.1), the \(((i-1)N+l)\)th element of \(\displaystyle \int {\pi (u)} \eta (u) d{Q_n}(u)\) is

$$\begin{aligned} \begin{array}{lll} &{}\displaystyle \int {{\pi _l}} (u){\eta _i}(u)d{Q_n}(u)\\ &{}\quad =\displaystyle \sum \limits _{j = 1}^p {\displaystyle \int {{\pi _l}(u){g_{ij}}(u)} ({\beta _j}(u) - {s_j}(u))} d{Q_n}(u)\\ &{}\quad \le {M_2}\displaystyle \sum \limits _{j = 1}^p {\displaystyle \int {{\pi _l}(u)} ({\beta _j}(u) - {s_j}(u))} d{Q_n}(u), \end{array} \end{aligned}$$
(A.9)

by Glivenko–Cantelli Theorem,

$$\begin{aligned} \sup _{a<<b}\left| Q_{n}(t)-Q(t)\right| =O_{p}\left( n^{-1 / 2}\right) , \end{aligned}$$

by \(k_j=O(n^{\frac{1}{{2m + 1}}})\), \(m>1\),

$$\begin{aligned} \mathop {\sup }\limits _{a \le u \le b} \left| {{Q_n}(u) - Q(u)} \right| = {\mathrm{{o}}_p}({k_j}^{ - 1}), \end{aligned}$$
(A.10)

by (A.10), condition C2 and Lemma 6.10 of Agarwal et al. (1980), for any \(1\le j\le p\),

$$\begin{aligned} \mathop {\max }\limits _l \{ \displaystyle \int {{\pi _l}} (u)({\beta _j}(t) - {s_j}(t))d{Q_n}(u)\} = {o_p}({h^{m + 1}}), \end{aligned}$$
(A.11)

by (A.9),

$$\begin{aligned} \displaystyle \int {{\pi _l}} (u){\eta _i}(u)d{Q_n}(u) \le {o_p}({h^{m + 1}}). \end{aligned}$$

Let \({D^T}{D_x}(B(U) - S(U)) = W = {(W_1^T, \ldots ,W_p^T)^T},{W_i} = {({w_{i1}}, \ldots ,{w_{i{N_j}}})^T}.\)

By (A.7)–(A.11),

$$\begin{aligned} {w_{il}} \le {o_p}(n{h^{m + 1}}), \end{aligned}$$
(A.12)

by Lemma 3

$$\begin{aligned} \begin{array}{lll} &{}{\left\| {{\pi ^T}(u) \cdot {{({D^T}D)}^{ - 1}} \cdot {D^\tau } {D_x}(B(U) - S(U))} \right\| ^2}\\ &{}\quad = tr({W^T}{({D^T}D)^{ - 1}}\pi (u) \cdot {\pi ^T}(u){({D^T}D)^{ - 1}}W)\\ &{}\quad \le {(\lambda _{\max }^{{{({D^T}D)}^{ - 1}}})^2}tr(\pi (u) \cdot {\pi ^T}(u) \cdot W{W^T})\\ &{}\quad = {\left( \lambda _{\max }^{{{({D^T}D)}^{ - 1}}}\right) ^2}tr({W^T}\pi (u) \cdot {\pi ^T}(u)W),\\ \end{array} \end{aligned}$$
(A.13)

by(2.5) and (A.12),

$$\begin{aligned} W_i^T\pi (u) = \sum \limits _l {{w_{il}}{\pi _l}(u)} \le {o_p}(n{h^{m + 1}})\sum {{\pi _l}} (u) = {o_p}(n{h^{m + 1}}). \end{aligned}$$

Hence

$$\begin{aligned} tr({W^T}\pi (u) \cdot {\pi ^T}(u)W) = \sum \limits _{j = 1}^p {{{(W_j^T\pi (u))}^2}} \le {o_p}({n^2}{h^{2(m + 1)}}), \end{aligned}$$
(A.13)

by (A.5), (A.7), (A.9) and (A.13),

$$\begin{aligned} \left\| {{E_\chi }({{\hat{\beta }}} (u) - s(u))} \right\| \le {o_p}({h^m}), \end{aligned}$$
(A.14)

by Lemma 4,

$$\begin{aligned} \left\| {s(u) - \beta (u)} \right\| = O({h^m}). \end{aligned}$$

Hence

$$\begin{aligned} \begin{aligned} \left\| {{E_\chi }({{\hat{\beta }}} (u) - \beta (u))} \right\|&= \left\| {{E_\chi }({{\hat{\beta }}} (u) - s(u) + s(u) - \beta (u))} \right\| \\&\le \left\| {{E_\chi }({{\hat{\beta }}} (u) - s(u)} \right\| + \left\| {s(u) - \beta (u))} \right\| = {O_p}({h^m}). \end{aligned} \end{aligned}$$
(A.15)

Now let us prove the equation

$$\begin{aligned} \left\| {Var({{\hat{\beta }}} (u))} \right\| = {o_p}\left( \frac{1}{{nh}}\right) , \end{aligned}$$
(A.16)

where \(V\mathrm{{a}}{\mathrm{{r}}_\chi }({{\hat{\beta }}} (u)) = {E_\chi }(({{\hat{\beta }}} (u) - {E_\chi }{{\hat{\beta }}} (u)){({E_\chi } - {E_\chi }{{\hat{\beta }}} (u))^T})\).

By (2.9),

$$\begin{aligned} V\mathrm{{a}}{\mathrm{{r}}_\chi }({{\hat{\beta }}} (u)) = {\pi ^T}(u) \cdot {({D^T}D)^{ - 1}} \cdot \pi (u){\sigma ^2} = {\displaystyle \Sigma _\beta }(u){\sigma ^2}, \end{aligned}$$

where \({\Sigma _\beta }(u) = {\pi ^T }(u) \cdot {({D^T }D)^{ - 1}}\pi (u)\).

Let \(c\in R^{p}\) be a constant vector. By Lemma 3,

$$\begin{aligned} \begin{aligned} {c^T}{\Sigma _\beta }(u)c&= tr({c^T}{\pi ^T}(u) \cdot {({D^T}D)^{ - 1}} \cdot \pi (u)c) =tr({({D^T}D)^{ - 1}} \cdot \pi (u)c{c^T}{\pi ^T}(u))\\&\le \lambda _{\max }^{{{({D^T}D)}^{ - 1}}}tr(\pi (u) \cdot c{c^T}{\pi ^T}(u)) =\lambda _{\max }^{{{({D^T}D)}^{ - 1}}}tr({c^T}\pi (u) \cdot \pi (u) \cdot c)\\&=\lambda _{\max }^{{{({D^T}D)}^{ - 1}}}tr({c^T}({\pi ^T}(u)\pi (u)) \cdot c) = \lambda _{\max }^{{{({D^T}D)}^{ - 1}}}{\left\| c \right\| ^2}{\left\| {\pi (u)} \right\| ^2}, \end{aligned}\nonumber \\ \end{aligned}$$
(A.17)

similarly,

$$\begin{aligned} {c^T}{\Sigma _\beta }(u)c \ge \lambda _{\min }^{{{({D^T}D)}^{ - 1}}}{\left\| c \right\| ^2}{\left\| {\pi (u)} \right\| ^2}. \end{aligned}$$
(A.18)

Let \(u \in \left( {{{\pi '}_{{i_u}}},{{\pi '}_{{i_u} + 1}}} \right] \). By (2.5),

$$\begin{aligned}&\sum \limits _{l = 1}^{{N_j}} {\pi _{jl}^2(u)} = \sum \limits _{i = {i_u} - m}^{{i_u}} {\pi _{jl}^2(u)} \ge \frac{1}{{m + 1}}{\left( \sum \limits _{i = {i_u} - m}^{{i_u}} {{\pi _{jl}}(u)} \right) ^2} = \frac{1}{{m + 1}}, \end{aligned}$$
(A.19)
$$\begin{aligned}&\sum \limits _{j = 1}^{{N_j}} {\pi _{jl}^2(u)} \le \left( \sum \limits _{l = 1}^{{N_j}} {\pi _{jl}}(u)\right) ^{2} = 1, \end{aligned}$$
(A.20)

by (A.5) and (A.17)–(A.20),

$$\begin{aligned} \frac{\mathrm{{1}}}{{\mathrm{{m}} + \mathrm{{1}}}}\left( \frac{1}{{{c_2}}} + {o_p}(1)\right) {(nh)^{ - 1}}{\left\| c \right\| ^2} \le {c^T}{\Sigma _\beta }(u)c \le \left( \frac{1}{{{c_1}}} + {o_p}(1)\right) {(nh)^{ - 1}}{\left\| c \right\| ^2}.\nonumber \\ \end{aligned}$$
(A.21)

On the other hand, we have

$$\begin{aligned} \begin{aligned} {E_\chi }{\left\| {{{\hat{\beta }}} (u) - {E_\chi }{{\hat{\beta }}} (u)} \right\| ^2}&= tr({E_\chi }{({{\hat{\beta }}} (u) - {E_\chi }{{\hat{\beta }}} (u))^T} ({{\hat{\beta }}} (u) - {E_\chi }{{\hat{\beta }}} (u)))\\&=tr(Var({{\hat{\beta }}} (u)))= {O_p}\left( \frac{1}{{nh}}\right) . \end{aligned} \end{aligned}$$

Hence (A.16) holds.

By (A.15) and (A.16),

$$\begin{aligned} \begin{aligned} \left\| {{{\hat{\beta }}} (u) - \beta (u)} \right\|&= \left\| {{{\hat{\beta }}} (u) - {E_\chi }{{\hat{\beta }}} (u) + {E_\chi } {{\hat{\beta }}} (u) - \beta (u)} \right\| \\&\le \left\| {{{\hat{\beta }}} (u) - {E_\chi }{{\hat{\beta }}} (u)} \right\| + \left\| {{E_\chi }{{\hat{\beta }}} (u) - \beta (u)} \right\| \\&= {O_p}\left( \frac{1}{{\sqrt{nh} }} + {h^m}\right) ={O_p} \left( {n^{ - \frac{m}{{2m + 1}}}}\right) . \end{aligned} \end{aligned}$$

\(\square \)

Proof of Corollary 2

The Corollary 2 follows by the proof of Theorem 1. \(\square \)

Proof of Theorem 3

Let \(c\in R^{p}\) be a constant vector. We have

$$\begin{aligned} \frac{{{c^T}({{\hat{\beta }}} (u) - \beta (u))}}{{\sqrt{{c^T}\sum \nolimits _\beta {(u)} } c}} = \frac{{{c^T}({{\hat{\beta }}} (u) - {E_\chi }{{\hat{\beta }}} (u) + {E_\chi }\beta (u) - \beta (u))}}{{\sqrt{{c^T}\sum \nolimits _\beta {(u)} } c}}, \end{aligned}$$

by (A.15), (A.21) and \({k_j} = O({n^{\frac{1}{{2m + 1}}}}),1 \le j \le p,\)

$$\begin{aligned} \frac{{{c^T}({E_\chi }{{\hat{\beta }}} (u) - \beta (u))}}{{\sqrt{{c^T}\sum \nolimits _\beta {(u)} } c}} = \frac{{{O_p}({h^m})}}{{{O_p}({{(nh)}^{ - \frac{1}{2}}})}} = {o_p}(1), \end{aligned}$$
(A.22)

then, it suffices to show that

$$\begin{aligned} \frac{{{c^T}({{\hat{\beta }}} (u) - {E_\chi }\beta (u))}}{{\sqrt{{c^T}\sum \nolimits _\beta {(u)} } c}}\longrightarrow N(0,{\sigma ^2}). \end{aligned}$$
(A.23)

Noting that

$$\begin{aligned} {{\hat{\beta }}} (u) - {E_\chi }({{\hat{\beta }}} (u)) = {\pi ^T}(u) \cdot {({D^T}D)^{ - 1}}{D^T}\varepsilon = A\varepsilon , \end{aligned}$$

where \(\varepsilon = {({\varepsilon _1},{\varepsilon _2}, \ldots ,{\varepsilon _n})^T }\), \(A = {\pi ^T}(u) \cdot {({D^T}D)^{ - 1}}{D^T} = ({A_1},{A_2}, \ldots ,{A_n})\),

$$\begin{aligned} {A_i}= & {} {\pi ^T}(u) \cdot {({D^T}D)^{ - 1}}\pi ({u_i}) \cdot {X_i}, \\ {c^T}({{\hat{\beta }}} (u) - {E_\chi }{{\hat{\beta }}} (u))= & {} {c^T}A\varepsilon = \sum \limits _{i = 1}^n {{c^T}{A_i}{\varepsilon _i} = \sum \limits _{i = 1}^n {b{}_i{\varepsilon _i}} }, \end{aligned}$$

where \({b_i} = {c^\tau }{A_i}\). To check the required Lindeberg–Feller condition, it suffices to verify

$$\begin{aligned} \mathop {\max b_i^2}\limits _{1 \le i \le n} = o\left( \sum \limits _{i = 1}^n {b_i^2}\right) . \end{aligned}$$

By (A.21), \(\sum \nolimits _{i = 1}^n {b_i^2} = {c^T}A{A^T}c = {c^T}{\pi ^T}(u){({D^T}D)^{ - 1}}\pi (u)c = c\sum \nolimits _\beta {(u)} c = O\left( \frac{1}{{nh}}\right) .\)

On the other hand, By Lemma 3 and \(\left| {{x_i}} \right| < {M_4}\),

$$\begin{aligned} \begin{aligned} b_i^2&= {c^T}{A_i}A_i^Tc = tr({c^T}{A_i}A_i^Tc)\\&\le {\left\| c \right\| ^2}tr({\pi ^T}(u) \cdot {({D^T}D)^{ - 1}}\pi ({u_i}) \cdot {X_i}X_i^T \cdot {\pi ^T}({u_i}) \cdot {({D^T}D)^{ - 1}}\pi (u))\\&\le {\left\| c \right\| ^2}{(\lambda _{\max }^{{{({D^T}D)}^{ - 1}}})^2}tr(\pi (u) {\pi ^T}(u)\pi ({u_i}) \cdot {X_i}X_i^T \cdot {\pi ^T}({u_i}))\\&\le {\left\| c \right\| ^2}{(\lambda _{\max }^{{{({D^T}D)}^{ - 1}}})^2}{p^2}tr({X_i}X_i^T) = {\left\| c \right\| ^2}{(\lambda _{\max }^{{{({D^T}D)}^{ - 1}}})^2}{p^2}(x_{i1}^2 + x_{i2}^2 + \cdots + x_{ip}^2)\\&= {p^2}{\left\| c \right\| ^2}{\left( \frac{1}{{nh}}\right) ^2}{\left\| {{X_i}} \right\| ^2}= O{\left( \frac{1}{{nh}}\right) ^2} \end{aligned} \end{aligned}$$

Hence

$$\begin{aligned} \frac{{\mathop {\max }\limits _i b_i^2}}{{\sum \nolimits _{i = 1}^n {b_i^2} }} = \frac{{O{{\left( \frac{1}{{nh}}\right) }^2}}}{{O\left( \frac{1}{{nh}}\right) }} = O\left( \frac{1}{{nh}}\right) = o(1). \end{aligned}$$

(A.23) holds. The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Ma, T. & Dai, J. New efficient spline estimation for varying-coefficient models with two-step knot number selection. Metrika 84, 693–712 (2021). https://doi.org/10.1007/s00184-020-00798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-020-00798-8

Keywords

Navigation