Skip to main content
Log in

Nonparametric quantile regression estimation for functional data with responses missing at random

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

This paper presents the nonparametric quantile regression estimation for the regression function operator when the functional data with the responses missing at random are considered. Then, the large sample properties of the proposed estimator are established under some mild conditions. Finally, a simulation study is conducted to investigate the finite sample properties of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aneiros-Pérez G, Vieu P (2006) Semi-functional partial linear regression. Stat Probab Lett 76:1102–1110

    Article  MathSciNet  Google Scholar 

  • Cai T, Hall P (2006) Prediction in functional linear regression. Ann Stat 34(5):2159–2179

    Article  MathSciNet  Google Scholar 

  • Cardot H, Crambes C, Sarda P (2005) Quantile regression when the covariates are functions. J Nonparametr Stat 17(7):841–856

    Article  MathSciNet  Google Scholar 

  • Cheng PE (1994) Nonparametric estimation of mean functionals with data missing at random. J Am Stat Assoc 89:81–87

    Article  Google Scholar 

  • Du J, Zhang ZZ, Sun ZM (2013) Variable selection for partially linear varying coefficient quantile regression model. Int J Biomath 6(3):1350015

    Article  MathSciNet  Google Scholar 

  • Du J, Xu DK, Cao RY (2018) Estimation and variable selection for partially functional linear models. J Korean Stat Soc 47:436–449

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Sued F, Vieu P (2013) Mean estimation with data missing at random for functional covariables. Statistics 47(4):688–706

    Article  MathSciNet  Google Scholar 

  • Geyer CJ (1994) On the asymptotics of constrained M-estimation. Ann Stat 22(4):1993–2010

    Article  MathSciNet  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New York

    Book  Google Scholar 

  • Kato K (2012) Estimation in functional linear quantile regression. Ann Stat 40(6):3108–3136

    Article  MathSciNet  Google Scholar 

  • Koenker R (2005) Quantile regression. Cambridge University Press, New York

    Book  Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50

    Article  MathSciNet  Google Scholar 

  • Kong D, Maity A, Hsu F, Tzeng J (2016) Testing and estimation in marker-set association study using semiparametric quantile regression kernel machine. Biometrics 72:364–371

    Article  MathSciNet  Google Scholar 

  • Laib N, Louani D (2010) Nonparametric kernel regression estimation for functional stationary ergodic data: asymptotic properties. J Multivar Anal 101(10):2266–2281

    Article  MathSciNet  Google Scholar 

  • Ling NX, Liang LL, Vieu P (2015) Nonparametric regression estimation for functional stationary ergodic data with missing at random. J Stat Plan Inference 162:75–87

    Article  MathSciNet  Google Scholar 

  • Ling NX, Liu Y, Vieu P (2016) Conditional mode estimation for functional stationary ergodic data with responses missing at random. Statistics 50(5):991–1013

    Article  MathSciNet  Google Scholar 

  • Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Lu Y, Du J, Sun Z (2014) Functional partially linear quantile regression model. Metrika 77(2):317–332

    Article  MathSciNet  Google Scholar 

  • Ramsay JO, Dalzell CJ (1991) Some tools for functional data analysis. J R Stat Soc Ser B 53:539–572

    MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer series in statistics. Springer, New York

    Book  Google Scholar 

  • Tang NS, Zhao PY, Zhu HT (2014) Empirical likelihood for estimating equations with nonignorably missing data. Stat Sin 24:723–747

    MathSciNet  MATH  Google Scholar 

  • Van der Vaart AW (1998) Asymptotic statistics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wang QH, Sun ZH (2007) Estimation in partially linear models with missing responses at random. J Multivar Anal 98(7):1470–1493

    Article  MathSciNet  Google Scholar 

  • Wang H, Zhu Z, Zhou J (2009) Quantile regression in partially linear varying coefficient models. Ann Stat 37:3841–3866

    Article  MathSciNet  Google Scholar 

  • Wang L, Cao R, Du J, Zhang Z (2019) A nonparametric inverse probability weighted estimation for functional data with missing response data at random. J Korean Stat Soc 48:537–546

    Article  MathSciNet  Google Scholar 

  • Yu P, Du J, Zhang ZZ (2017) Varying-coefficient partially functional linear quantile regression models. J Korean Stat Soc 46:462–475

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor and the referee for their valuable suggestions and comments that greatly improved the manuscript. Xu’s work was supported by National Natural Science Foundation of China (No. 11801514) and Zhejiang Provincial Natural Science Foundation of China (No. LY17A010026). Du’s work was supported by National Natural Science Foundation of China (Nos. 11971045, 11771032), China Postdoctoral Science Foundation funded project (No. 2019M653502), the Science and Technology Project of Beijing Municipal Education Commission (KM201910005015), and the International Research Cooperation Seed Fund of Beijing University of Technology (No. 006000514118553) .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proofs of main theorems

Appendix A. Proofs of main theorems

Throughout this paper, we will introduce the following notations. We use \({\mathcal {F}}_n\) to denote the set of the random variables \((X_1,\ldots , X_n)\) and \(\psi (\cdot )\) denote the score function of \(\rho _\tau (\cdot )\). For fixed random function \(\chi \), denote \(R_i=m(X_i)-m(\chi )\), \(\theta (\alpha )=\sqrt{n\phi (h)}(\alpha -m(\chi ))\) and \({\hat{\theta }}=\theta ({\hat{\alpha }}).\) Then, let

$$\begin{aligned} {\hat{\eta _i}}(\theta )= & {} \frac{\delta _i}{{\hat{\pi }}(X_i)} \rho _\tau \left( \varepsilon _i+R_i-\frac{\theta }{\sqrt{n\phi (h)}}\right) K_h(d(\chi ,X_i))\\&-\frac{\delta _i}{{\hat{\pi }}(X_i)} \rho _\tau \left( \varepsilon _i+R_i\right) K_h(d(\chi ,X_i)),\\ \eta _i(\theta )= & {} \frac{\delta _i}{ \pi (X_i)} \rho _\tau \left( \varepsilon _i+R_i-\frac{\theta }{\sqrt{n\phi (h)}} \right) K_h(d(\chi ,X_i))\\&-\frac{\delta _i}{ \pi (X_i)} \rho _\tau \left( \varepsilon _i+R_i\right) K_h(d(\chi ,X_i)). \end{aligned}$$

We first introduce the following lemmas.

Lemma 1

Suppose that conditions C1–C6 hold, then

$$\begin{aligned}&\left| \frac{1}{\sqrt{n\phi (h)}}\sum _{i=1}^n \frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))[\psi (\varepsilon _i) - \psi (\varepsilon _i+R_i) ]\right| =o_p(1). \end{aligned}$$

Proof

By the condition C6, we have

$$\begin{aligned}&E \left( \frac{1}{\sqrt{n\phi (h)}}\sum _{i=1}^n \frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))[\psi (\varepsilon _i) - \psi (\varepsilon _i+R_i) ]\left. \right| {\mathcal {F}}_n\right) \\&\quad = \frac{1}{\sqrt{n\phi (h)}}\sum _{i=1}^n \frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))f(0|X_i)(m(X_i)-m(\chi )) (1+o_p(1)) \\&\quad \le C \frac{h^\beta }{\sqrt{n\phi (h)}}\sum _{i=1}^n \frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))\\&\quad =O_p(1) h^\beta \sqrt{n\phi (h)}, \end{aligned}$$

where the last equality holds by Lemma 4.

On the other hand, we have

$$\begin{aligned}&\text {Var} \left( \frac{1}{\sqrt{n\phi (h)}}\sum _{i=1}^n \frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))[\psi (\varepsilon _i) - \psi (\varepsilon _i+R_i) ]\left. \right| {\mathcal {F}}_n\right) \\&\quad \le \frac{1}{{n\phi (h)}}\sum _{i=1}^n \frac{\delta _i}{ \pi ^2(X_i)}K_h^2(d(\chi ,X_i))E\left( [\psi (\varepsilon _i) - \psi (\varepsilon _i+R_i) ]^2\left. \right| {\mathcal {F}}_n\right) \\&\quad = \frac{1}{ {n\phi (h)}}\sum _{i=1}^n \frac{\delta _i}{ \pi ^2(X_i)}K_h^2(d(\chi ,X_i))f(0|X_i)(m(X_i)-m(\chi )) (1+o_p(1))\\&\quad \le C \frac{h^\beta }{ {n\phi (h)}}\sum _{i=1}^n \frac{\delta _i}{ \pi ^2(X_i)}K_h^2(d(\chi ,X_i))\\&\quad =O_p(1) h^\beta . \end{aligned}$$

Then, by the condition \(h^\beta \sqrt{n\phi (h)}\rightarrow 0 \), we have

$$\begin{aligned}&\left| \frac{1}{\sqrt{n\phi (h)}}\sum _{i=1}^n \frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))[\psi (\varepsilon _i) - \psi (\varepsilon _i+R_i) ]\right| \\&\quad =O_p(1) h^\beta \sqrt{n\phi (h)} +O_p(1) h^{\beta /2}\\&\quad =o_p(1). \end{aligned}$$

\(\square \)

Lemma 2

Suppose that conditions 1–6 hold, then for any \(L>0\), it has

$$\begin{aligned}&\sup \limits _{\Vert { \theta }\Vert \le L} \left| \sum _{i=1}^n \left[ \eta _i( \theta ) + \frac{\theta }{\sqrt{n\phi (h)}}\frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))\psi (\varepsilon _i)\right] \right. \\&\quad \left. -E\left( \sum _{i=1}^n \eta _i( \theta ) \right) \right| =o_p(1). \end{aligned}$$

Proof

By the Knight’s identity, we have

$$\begin{aligned}&\eta _i(\theta )+ \frac{\theta }{\sqrt{n\phi (h)}}\frac{\delta _i}{ \pi (X_i)}\psi (\varepsilon _i)\\&\quad =\frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))\int _0^{\frac{\theta }{\sqrt{n\phi (h)}}}[I_{\{\varepsilon _i+R_i<s\}}-I_{\{\varepsilon _i<0\}}]ds. \end{aligned}$$

Then, by direct calculation, we have

$$\begin{aligned} \text {E} \left( \frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))\int _0^{\frac{\theta }{\sqrt{n\phi (h)}}}[I_{\{\varepsilon _i+R_i<s\}}-I_{\{\varepsilon _i<0\}}]ds \right) ^2=O\left( (n\phi (h))^{-3/2} \right) . \end{aligned}$$

Denote \( \zeta _i(\theta )=\eta _i(\theta ) + \frac{\theta }{\sqrt{n\phi (h)}}\frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))\psi (\varepsilon _i+R_i).\) Invoking Lemma 19.24 of Van der Vaart (1998), we have

$$\begin{aligned} \sup \limits _{\Vert { \theta }\Vert \le L} \left| \sum _{i=1}^n \zeta _i( \theta ) - \sum _{i=1}^n E\left[ \zeta _i( \theta ) \right] \right| =o_p(1). \end{aligned}$$
(A.1)

Then, according to Lemma 1, one has

$$\begin{aligned}&\sup \limits _{|{ \theta }|\le L} \left| \sum _{i=1}^n \zeta _i( \theta ) - \sum _{i=1}^n \eta _i( \theta ) \right| =o_p(1). \end{aligned}$$

Combining this with Eq. (A.1), we can obtain

$$\begin{aligned}&\sup \limits _{|{ \theta }|\le L} \left| \sum _{i=1}^n \left[ \eta _i( \theta ) + \frac{\theta }{\sqrt{n\phi (h)}}\frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))\psi (\varepsilon _i)\right] \right. \\&\quad \left. -E\left( \sum _{i=1}^n \eta _i( \theta ) \right) \right| =o_p(1). \end{aligned}$$

\(\square \)

Lemma 3

Suppose that conditions 1–6 hold, then for any \(L>0\), it has that

$$\begin{aligned}&\sup \limits _{|{ \theta }|\le L} \left| \sum _{i=1}^n \left[ \hat{\eta }_i( \theta ) + \frac{\theta }{\sqrt{n\phi (h)}}\frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))\psi (\varepsilon _i)\right] \right. \\&\quad \left. -E\left( \sum _{i=1}^n {\hat{\eta }}_i(\varvec{\theta }) \right) \right| =o_p(1). \end{aligned}$$

Proof

To prove Lemma 3, it is sufficient to show that

$$\begin{aligned} \sup \limits _{|{ \theta }|\le L} \left| \sum _{i=1}^n \left[ \hat{\eta }_i( \theta )- \eta _i( \theta ) \right] \right| =o_p(1). \end{aligned}$$

By the Knight’s identity, one has

$$\begin{aligned}&\sum _{i=1}^n \left[ {\hat{\eta }}_i( \theta )- \eta _i( \theta ) \right] \\&\quad = \sum _{i=1}^n \left( \frac{\delta _i}{{\hat{\pi }}(X_i)}-\frac{\delta _i}{ \pi (X_i)} \right) \rho _\tau \left( \varepsilon _i+R_i-\frac{\theta }{\sqrt{n\phi (h)}}\right) K_h(d(\chi ,X_i))\\&\quad \quad -\sum _{i=1}^n \left( \frac{\delta _i}{{\hat{\pi }}(X_i)} -\frac{\delta _i}{ \pi (X_i)} \right) \rho _\tau \left( \varepsilon _i+R_i\right) K_h(d(\chi ,X_i))\\&\quad =\sum _{i=1}^nK_h(d(\chi ,X_i)) \left( \frac{\delta _i}{{\hat{\pi }}(X_i)}-\frac{\delta _i}{ \pi (X_i)} \right) \\&\quad \quad \times \,\left[ \rho _\tau \left( \varepsilon _i+R_i-\frac{\theta }{\sqrt{n\phi (h)}}\right) - \rho _\tau \left( \varepsilon _i+R_i\right) \right] \\&\quad = \sum _{i=1}^nK_h(d(\chi ,X_i)) \left( \frac{\delta _i}{{\hat{\pi }}(X_i)}-\frac{\delta _i}{ \pi (X_i)} \right) \frac{ \theta }{\sqrt{n\phi (h)}}\left[ I_{\{\varepsilon _i+R_i<0\}}-\tau \right] \\&\quad \quad + \sum _{i=1}^nK_h(d(\chi ,X_i)) \left( \frac{\delta _i}{{\hat{\pi }}(X_i)}-\frac{\delta _i}{ \pi (X_i)} \right) \int _0^{\frac{\theta }{\sqrt{n\phi (h)}} }\left[ I_{\{\varepsilon _i+R_i<s\}}-I_{\{\varepsilon _i+R_i<0\}} \right] ds\\&\quad =I_{n1}+I_{n2}, \end{aligned}$$

where the definitions of \(I_{n1}\) and \(I_{n2}\) are clear from the context.

First, we consider \(I_{n1}.\)

$$\begin{aligned} I_{n1}&= \sum _{i=1}^nK_h(d(\chi ,X_i)) \left( \frac{\delta _i}{{\hat{\pi }}(X_i)}-\frac{\delta _i}{ \pi (X_i)} \right) \frac{\theta }{\sqrt{n\phi (h)}} \left[ I_{\{\varepsilon _i+R_i<0\}}-\tau \right] \\&\quad =\sum _{i=1}^nK_h(d(\chi ,X_i)) \left( \frac{\delta _i}{{\hat{\pi }}(X_i)}-\frac{\delta _i}{ \pi (X_i)} \right) \frac{ \theta }{\sqrt{n\phi (h)}} \left[ I_{\{\varepsilon _i<0\}}-\tau \right] \\&\quad \quad + \sum _{i=1}^nK_h(d(\chi ,X_i)) \left( \frac{\delta _i}{{\hat{\pi }}(X_i)}-\frac{\delta _i}{ \pi (X_i)} \right) \frac{ \theta }{\sqrt{n\phi (h)}}\left[ I_{\{\varepsilon _i+R_i<0\}}-I_{\{\varepsilon _i<0\}} \right] \\&\quad =I_{n11}+I_{n12}. \end{aligned}$$

It is easy to show \(E(I_{n11})=0.\) By conditions C3-C4 and Proposition 2 of Laib and Louani (2010), one has

$$\begin{aligned} E(I_{n11}^2)&= \frac{ \theta ^2}{ n\phi (h)} \tau (1-\tau )\sum _{i=1}^nE\left[ K_h^2(d(\chi ,X_i)) \left( \frac{\delta _i}{{\hat{\pi }}(X_i)}-\frac{\delta _i}{ \pi (X_i)} \right) ^2\right] \\&= \frac{ \theta ^2}{ n\phi (h)} \tau (1-\tau )\sum _{i=1}^nE\left[ K_h^2(d(\chi ,X_i)) \left( \frac{1}{{\hat{\pi }}(X_i)}-\frac{1}{ \pi (X_i)} \right) ^2 \pi (X_i)\right] \\&= \frac{ \theta ^2}{ n\phi (h)} \tau (1-\tau )\sum _{i=1}^nE\left[ K_h^2(d(\chi ,X_i)) \frac{({\hat{\pi }}(X_i)- \pi (X_i))^2}{ \pi (X_i)} \right] (1+o(1))\\&\le \frac{(1+o(1))\log \log (n)}{n^2\phi ^2(h)c_0^2} \theta ^2\tau (1-\tau )\sum _{i=1}^nE\left[ K_h(d(\chi ,X_i)) \right] \\&= \frac{(1+o(1))\log \log (n)}{n^2\phi (h)c_0^2} \theta ^2\tau (1-\tau )\sum _{i=1}^n \left[ M_1f_{i,1}(\chi ) +O_{a.s}(g_{i,\chi }(h)) \right] \\&= O\left( \frac{\log \log (n)}{n\phi (h)}\right) . \end{aligned}$$

Thus, one has \( I_{n11}=O_p\left( \sqrt{\frac{\log \log (n)}{n\phi (h)}}\right) =o_p(1)\) by condition C3. Similar to \(I_{n11},\) we have \(E(I_{n12})=O\left( \frac{h^\beta }{\phi (h)}\sqrt{{\log \log (n)}}\right) \) and \(E(I^2_{n12})=O\left( \frac{h^\beta \log \log (n)}{n\phi (h)}\right) .\) Therefore, we have \(I_{n12}=O_p\left( \frac{h^\beta }{\phi (h)}\sqrt{{\log \log (n)}}\right) .\) Thus \(I_{n1}=o_p(1).\)

Next, we consider \(I_{n2}.\) By straightforward algebra, one has

$$\begin{aligned} E(I_{n 2})&= \sum _{i=1}^nE\left( K_h(d(\chi ,X_i)) \left( \frac{\delta _i}{{\hat{\pi }}(X_i)}-\frac{\delta _i}{ \pi (X_i)} \right) \right. \\&\quad \left. \times \,\int _0^{\frac{ \theta }{\sqrt{n\phi (h)}}}\left[ I_{\{\varepsilon _i+R_i<s\}}-I_{\{\varepsilon _i+R_i<0\}} \right] ds \right) \\&\le C \frac{1}{ {n\phi (h)}} \sum _{i=1}^nE\left( K_h(d(\chi ,X_i)) \left| \frac{\delta _i}{{\hat{\pi }}(X_i)}-\frac{\delta _i}{ \pi (X_i)} \right| \right) \\&\le C\sqrt{\frac{\log \log (n)}{n\phi (h)}} \frac{1}{ {n\phi (h)}} \sum _{i=1}^nE\left( K_h(d(\chi ,X_i)) \right) \\&\le C\sqrt{\frac{\log \log (n)}{n\phi (h)}}. \end{aligned}$$

Combining the above arguments with condition C5, we have

$$\begin{aligned} \sup \limits _{|{ \theta }|\le L} \left| \sum _{i=1}^n \left[ \hat{\eta }_i( \theta )- \eta _i( \theta ) \right] \right| =O_p\left( \frac{h^\beta \sqrt{{\log \log (n)}}}{\phi (h) }\right) =o_p(1). \end{aligned}$$

\(\square \)

Lemma 4

Suppose that conditions 1–6 hold, then we have

$$\begin{aligned} E\left( \frac{1}{ \pi (X_i)}K^k_h(d(\chi ,X_i))\right)&=\phi (h)\left( M_k\frac{f_{1}(\chi )}{\pi (\chi )}+O_{a.s}(g_{i,\chi }(h)/\pi (\chi )) \right) , k=1,2, \\ E\left( \frac{\delta _i}{ \pi (X_i)}K^k_h(d(\chi ,X_i))\right)&=\phi (h)\left( M_kf_{1}(\chi )+o(1) \right) , k=1,2. \end{aligned}$$

and

$$\begin{aligned} \frac{1}{ {n\phi (h)}}\sum _{i=1}^n E\left( K_h(d(\chi ,X_i)) f(0|X_i) \right) =M_1 f(0|\chi )+o(1). \end{aligned}$$

The proof of Lemma 4 is similar to Lemma 1 of Laib and Louani (2010). By Lemma 4 and the Lindeberg–Feller central limit theorem, we have the following Lemma 5.

Lemma 5

Suppose that conditions 1–6 hold, then we have

$$\begin{aligned} \frac{1}{ \sqrt{n\phi (h)}} \sum \limits _{i=1}^n \frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))\psi (\varepsilon _i)\rightarrow N(0,\sigma ^2(\chi )), \end{aligned}$$

where \(\sigma ^2(\chi )=\tau (1-\tau )M_2\frac{f_1(\chi )}{\pi (\chi )}.\)

Lemma 6

Suppose that conditions 1–6 hold, then we have that

$$\begin{aligned} E\left( \sum _{i=1}^n \eta _i( \theta ) \right) =\theta ^2M_1 f(0|\chi )+o(1). \end{aligned}$$

Proof

By the Knight’s identity, we have

$$\begin{aligned} \sum _{i=1}^n \eta _i(\theta )= & {} \sum _{i=1}^n \frac{\delta _i}{ \pi (X_i)} K_h(d(\chi ,X_i)) \left( \rho _\tau \left( \varepsilon _i+R_i-\frac{\theta }{\sqrt{n\phi (h)}} \right) - \rho _\tau \left( \varepsilon _i+R_i\right) \right) \\ \quad= & {} \sum _{i=1}^n \frac{\delta _i}{ \pi (X_i)} K_h(d(\chi ,X_i)) \frac{\theta }{\sqrt{n\phi (h)}} (I_{\{\varepsilon _i<0\}}-\tau ) \\ \quad \quad+ & {} \sum _{i=1}^n \frac{\delta _i}{ \pi (X_i)} K_h(d(\chi ,X_i)) \int _0^{ \frac{\theta }{\sqrt{n\phi (h)}} } (I_{\{\varepsilon _i+R_i<s\}}-I_{\{\varepsilon _i<0\}})ds. \end{aligned}$$

Invoking the fact \(EI_{\{\varepsilon _i<0\}}=\tau ,\) we have

$$\begin{aligned}&E\left( \sum _{i=1}^n \eta _i( \theta ) \right) \\&\quad =\sum _{i=1}^n E\left( \frac{\delta _i}{ \pi (X_i)} K_h(d(\chi ,X_i)) \int _0^{ \frac{\theta }{\sqrt{n\phi (h)}} } (I_{\{\varepsilon _i+R_i<s\}}-I_{\{\varepsilon _i<0\}})ds \right) \\&\quad =\sum _{i=1}^n E\left( \frac{\delta _i}{ \pi (X_i)} K_h(d(\chi ,X_i)) \int _0^{ \frac{\theta }{\sqrt{n\phi (h)}} } f(0|X_i)s(1+o_p(1))ds \right) \\&\quad =\sum _{i=1}^n E\left( \frac{\delta _i}{ \pi (X_i)} K_h(d(\chi ,X_i)) f(0|X_i)\frac{\theta ^2}{ {2n\phi (h)}} (1+o_p(1)) \right) \\&\quad =\sum _{i=1}^n E\left( K_h(d(\chi ,X_i)) f(0|X_i)\frac{\theta ^2}{ {2n\phi (h)}} (1+o_p(1)) \right) \\&\quad =\frac{1}{2}\theta ^2M_1 f_1(\chi )f(0|\chi )+o(1), \end{aligned}$$

where the last equality holds by Lemma 4. \(\square \)

Proof of Theorem 1

By Lemmas 3 and 6, we have

$$\begin{aligned}&\sum \limits _{i=1}^n \frac{\delta _i}{{\hat{\pi }}(X_i)} \rho _\tau \left( Y_i-m(\chi )\right) K_h(d(\chi ,X_i))-\sum \limits _{i=1}^n \frac{\delta _i}{{\hat{\pi }}(X_i)} \rho _\tau \left( \varepsilon _i+R_i\right) K_h(d(\chi ,X_i))\\&\quad =\sum \limits _{i=1}^n \frac{\delta _i}{{\hat{\pi }}(X_i)} \rho _\tau \left( \varepsilon _i+R_i-\frac{\theta }{\sqrt{n\phi (h)}}\right) K_h(d(\chi ,X_i))\\&\quad \quad -\sum \limits _{i=1}^n \frac{\delta _i}{{\hat{\pi }}(X_i)} \rho _\tau \left( \varepsilon _i+R_i\right) K_h(d(\chi ,X_i))\\&\quad = \sum \limits _{i=1}^n \frac{\theta }{\sqrt{n\phi (h)}}\frac{\delta _i}{ \pi (X_i)}K_h(d(\chi ,X_i))\psi (\varepsilon _i)+\theta ^2M_1 f(0|\chi )+o(1)\\&\quad =\theta W_n+\frac{1}{2}\theta ^2M_1f_1(\chi ) f(0|\chi )+o(1), \end{aligned}$$

where the last equality holds by Lemma 5, \(W_n\) is normal random variable with zero mean and variance \(\sigma ^2(\chi )=\tau (1-\tau )M_2\frac{f_1(\chi )}{\pi (\chi )}.\) Invoking the epiconvergence results of Geyer (1994), we have

$$\begin{aligned} {\hat{\theta }}=(M_1f_1(\chi ) f(0|\chi ))^{-1}W_n+o_p(1). \end{aligned}$$

Combining this with Lemma 5, we have

$$\begin{aligned} \sqrt{n\phi (h)}({\hat{m}}_n(\chi ) -m(\chi )) \rightarrow N\left( 0, \varpi (\chi )\right) , \end{aligned}$$

where \(\varpi (\chi )= \tau (1-\tau )\frac{M_2}{M_1^2}\frac{1}{ f_1(\chi )\pi (\chi ) f^2(0|\chi )}.\)\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Du, J. Nonparametric quantile regression estimation for functional data with responses missing at random. Metrika 83, 977–990 (2020). https://doi.org/10.1007/s00184-020-00769-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-020-00769-z

Keywords

Mathematics Subject Classification

Navigation