Skip to main content
Log in

Estimation of finite mixture models of skew-symmetric circular distributions

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Analysis of circular data is challenging, since the usual statistical methods are unsuitable and it is necessary to use circular periodic probabilistic models. Because some actual circular datasets exhibit asymmetry and/or multimodality, finite mixtures of symmetric circular distributions to model and fit these data have been investigated. However, it is necessary to question the predominant assumption that each component in the finite mixture model is symmetric. In this study, we consider a finite mixture model of possibly skewed circular distributions and discuss the expectation-maximization (EM) algorithm for the maximum likelihood estimate. It is shown that the maximum likelihood estimator is strongly consistent under some suitable conditions in a finite mixture of skew-symmetric circular distributions. A modified M-step in the EM algorithm is proposed in order to estimate the unknown parameter vectors effectively. To investigate the performance of our proposed model with its estimation procedure, we provide a numerical example as well as data analysis using the records of the time of day of fatal traffic accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe T, Pewsey A (2011) Sine-skewed circular distributions. Stat Pap 52(3):683–707

    Article  MathSciNet  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  Google Scholar 

  • Banerjee A, Dhillon IS, Ghosh J, Sra S (2005) Clustering on the unit hypersphere using von Mises–Fisher distributions. J Mach Learn Res 6(Sep):1345–1382

    MathSciNet  MATH  Google Scholar 

  • Chen J (2017) Consistency of the MLE under mixture models. Stat Sci 32(1):47–63

    Article  MathSciNet  Google Scholar 

  • Chen J, Tan X, Zhang R (2008) Inference for normal mixtures in mean and variance. Stat Sin 18(2):443–465

    MathSciNet  MATH  Google Scholar 

  • Cheng R, Liu W (2001) The consistency of estimators in finite mixture models. Scand J Stat 28(4):603–616

    Article  MathSciNet  Google Scholar 

  • Dhillon IS, Modha DS (2001) Concept decompositions for large sparse text data using clustering. Mach Learn 42(1–2):143–175

    Article  Google Scholar 

  • Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fraser MD, Hsu YS, Walker JJ (1981) Identifiability of finite mixtures of von Mises distributions. Ann Statist 9(5):1130–1131

    Article  MathSciNet  Google Scholar 

  • Hall P, Watson G, Cabrera J (1987) Kernel density estimation with spherical data. Biometrika 74(4):751–762

    Article  MathSciNet  Google Scholar 

  • Holzmann H, Munk A, Stratmann B (2004) Identifiability of finite mixtures-with applications to circular distributions. Sankhyā 66(3):440–449

    MathSciNet  MATH  Google Scholar 

  • Karlis D, Xekalaki E (2003) Choosing initial values for the EM algorithm for finite mixtures. Comput Stat Data Anal 41(3–4):577–590

    Article  MathSciNet  Google Scholar 

  • Ley C, Verdebout T (2017a) Modern directional statistics. Chapman and Hall, Boca Raton

    Book  Google Scholar 

  • Ley C, Verdebout T (2017b) Skew-rotationally-symmetric distributions and related efficient inferential procedures. J Multivar Anal 159:67–81

    Article  MathSciNet  Google Scholar 

  • Lin TI (2009) Maximum likelihood estimation for multivariate skew normal mixture models. J Multivar Anal 100(2):257–265

    Article  MathSciNet  Google Scholar 

  • Lin TI, Lee JC, Yen SY (2007) Finite mixture modelling using the skew normal distribution. Stat Sin 17(3):909–927

    MathSciNet  MATH  Google Scholar 

  • Liu G, Li P, Liu Y, Pu X (2019) On consistency of the MLE under finite mixtures of location-scale distributions with a structural parameter. J Stat Plan Inference 199:29–44

    Article  MathSciNet  Google Scholar 

  • Mardia KV, Jupp PE (2009) Directional statistics. Wiley, Chichester

    MATH  Google Scholar 

  • McLachlan G, Peel D (2004) Finite mixture models. Wiley, Hoboken

    MATH  Google Scholar 

  • Melnykov V, Melnykov I (2012) Initializing the EM algorithm in Gaussian mixture models with an unknown number of components. Comput Stat Data Anal 56(6):1381–1395

    Article  MathSciNet  Google Scholar 

  • Miyata Y, Shiohama T, Abe T (2019) Identifiability of asymmetric circular and cylindrical distributions. arXiv e-prints arXiv:1908.09114

  • Redner R (1981) Note on the consistency of the maximum likelihood estimate for nonidentifiable distributions. Ann Stat 9(1):225–228

    Article  MathSciNet  Google Scholar 

  • Redner RA, Walker HF (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26(2):195–239

    Article  MathSciNet  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  Google Scholar 

  • Tanaka K (2009) Strong consistency of the maximum likelihood estimator for finite mixtures of location-scale distributions when penalty is imposed on the ratios of the scale parameters. Scand J Stat 36(1):171–184

    MathSciNet  MATH  Google Scholar 

  • Teicher H (1963) Identifiability of finite mixtures. Ann Math Stat 34:1265–1269

    Article  MathSciNet  Google Scholar 

  • Wald A (1949) Note on the consistency of the maximum likelihood estimate. Ann Math Stat 20:595–601

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and anonymous referees for helpful suggestions that led to the improvement of the paper. Yoichi Miyata was supported in part by the JSPS KAKENHI (Grant Number 19K11863) and the competitive research expenses of Takasaki City University of Economics. Takayuki Shiohama was supported in part by the JSPS KAKENHI (Grant Number 18K01706). Toshihiro Abe was supported in part by the JSPS KAKENHI (Grant Number 19K11869) and Nanzan University Pache Research Subsidy I-A-2 for the 2019 academic year.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Miyata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xlsx 16 KB)

Appendices

Appendix

Proofs of the main results

In this Appendix, we provide the proofs of Theorem 1 and Proposition 1 stated in Sect. 3.

Let \({\mathcal {N}}(\varvec{\eta }):=\{ \theta \in [0,2\pi )|f^{\psi }(\theta |\varvec{\eta })=0\}\). For simplicity of exposition, we define a set of the mixing proportions \(\varvec{\alpha }=(\alpha _{1}, \ldots , \alpha _{g})^{T}\) by \(A:=\left\{ \varvec{\alpha }| \sum _{j=1}^{g}\alpha _{j}=1, \alpha _{j} \ge 0\right\} \), and the expectation of function \(q(\theta )\) of \(\theta \) on \([0,2\pi )\) under the true model \(f^{\psi }(\theta |\varvec{\eta }^{0})\) by \(E_{0}\{ q( \varTheta )\} :=\int _{0}^{2\pi }q(\theta )f^{\psi }(\theta |\varvec{\eta }^{0})d\theta \). Then, we present the following condition.

  • [A1’] \(\varGamma ^{\psi }\) is a compact subset in \({\mathbb {R}}^{(b+3)g}\) such that for any \(\theta \in [0,2\pi )\), \(\sup _{\varvec{\eta }\in \varGamma ^{\psi }}f^{\psi }(\theta |\varvec{\eta })<\infty \).

In addition, we define conditions [A2’]–[A5’] as conditions [A2]–[A5] with \(\varvec{\eta }_{j}\), \(\varvec{\eta }_{j}^{0}\), \(\varvec{\eta }_{k}^{0}\), \(\varvec{\eta }_{j}^{*}\), and \({\mathcal {S}}^{1}\times B\) replaced by \(\varvec{\eta }\), \(\varvec{\eta }^{0}\), \(\varvec{\eta }^{0}\), \(\varvec{\eta }^{*}\), and \(\varGamma ^{\psi }\), respectively. Note that [A1’]–[A5’] are conditions imposed on the mixture model (5) whereas [A1]–[A5] are conditions on every component density.

To prove Theorem 1, we prepare two lemmas.

Lemma 1

Under conditions [A1]–[A5], [A1’]–[A5’] holds.

Proof

Let \(f_{j}(\theta )\)\((j=1, \ldots , g)\) be non-negative valued functions on \([0, 2\pi )\). Before verifying [A1’]–[A5’], we prepare the following inequalities.

  1. 1.

    For any \(\varvec{\alpha }\in A\) and any \(f_{j}(\theta )\)\((j=1, \ldots , g)\),

    $$\begin{aligned} \log \sum _{j=1}^{g}\alpha _{j}f_{j}(\theta )\ge \sum _{j=1}^{g}\alpha _{j}\log f_{j}(\theta ) . \end{aligned}$$
    (A.1)
  2. 2.

    \(\min _{j=1, \ldots , g}\{ f_{j}(\theta ) \} \ge 1\) implies for any \(\varvec{\alpha }\in A\),

    $$\begin{aligned} \log \sum _{j=1}^{g}\alpha _{j}f_{j}(\theta ) \le \sum _{j=1}^{g}\log f_{j}(\theta ). \end{aligned}$$
    (A.2)

The former inequality follows from Jensen’s inequality and the latter is easily proved by using the facts \(f_{j}(\theta )\le \max _{j=1, \ldots , g}f_{j}(\theta )\).

Because [A4’] and [A5’] are obvious, we only verify [A1’], [A2’], and [A3’]. First, we check [A1’]. We prove only that \(\varGamma ^{\psi }\) is compact, because the rest is obvious. Since the \({\mathcal {S}}^{1}\), which is the range of \(\varvec{\mu }_{j}\), is a closed and bounded set in \({\mathbb {R}}^{2}\), \({\mathcal {S}}^{1}\) is compact in \({\mathbb {R}}^{2}\). Because A is compact in \({\mathbb {R}}^{g}\), B is compact from [A1], and the parameter space can be expressed as a direct product from \(\varGamma ^{\psi }=A\times {\mathcal {S}}^{1}\times \cdots \times {\mathcal {S}}^{1}\times B\times \cdots \times B\), \(\varGamma ^{\psi }\) is also compact.

Next, we check [A2’]. It follows from inequality (A.2) that

$$\begin{aligned}&E_{0}\left[ \log \sup _{\varvec{\eta }\in U(\varvec{\eta }^{*})}\left\{ \max (f^{\psi }(\varTheta |\varvec{\eta }),1) \right\} \right] \nonumber \\&\quad \le E_{0}\left[ \log \sum _{j=1}^{g}\alpha _{j}\sup _{\varvec{\eta }\in U(\varvec{\eta }^{*})}\max (f^{\psi }(\varTheta |\varvec{\eta }_{j}),1) \right] \nonumber \\&\quad \le \sum _{j=1}^{g}E_{0}\left[ \log \sup _{\varvec{\eta }\in U(\varvec{\eta }^{*})}\max (f^{\psi }(\varTheta |\varvec{\eta }_{j}),1) \right] \nonumber \\&\quad = \sum _{j=1}^{g}\sum _{k=1}^{g}\alpha _{k}^{0}E_{\varvec{\eta }_{k}^{0}}\left[ \log \sup _{\varvec{\eta }_{j}\in U(\varvec{\eta }_{j}^{*})}\max (f^{\psi }(\varTheta |\varvec{\eta }_{j}),1) \right] , \end{aligned}$$
(A.3)

for some neighborhood \(U(\varvec{\eta }_{j}^{*})\) of \(\varvec{\eta }_{j}^{*}\). Then, by condition [A2], Eq. (A.3) is finite, and hence, [A2’] is verified.

Finally, we check [A3’]. Combining condition [A3] and inequality (A.1) yields \(E_{0}\{ \log f^{\psi }(\varTheta |\varvec{\eta })\} \ge \sum _{j=1}^{g}\sum _{k=1}^{g}\alpha _{j}\alpha _{k}^{0}E_{\varvec{\eta }_{k}^{0}}\left\{ \log f^{\psi }(\varTheta |\varvec{\eta }_{j})\right\} >-\infty \), which completes the proof of [A3’]. \(\square \)

Lemma 2

Under conditions [A1’]–[A5’], it holds that for any \(\varvec{\eta }^{*}\in \varGamma ^{\psi }\) with \(\text {dis}\{ \varvec{\eta }^{*}, \varGamma ^{\psi }(\varvec{\eta }^{0})\} >0\) and any decreasing sequence \(\{ \delta _{n}\}\) with \(\delta _{n}\downarrow 0\)\((n\rightarrow \infty )\),

$$\begin{aligned} \lim _{n\rightarrow \infty } E_{0}\left\{ \log \sup _{\varvec{\eta }\in U_{\delta _{n}}(\varvec{\eta }^{*})}f^{\psi }(\varTheta |\varvec{\eta }^{*})\right\}&<E_{0}\left\{ \log f^{\psi }(\varTheta |\varvec{\eta }^{0})\right\} . \end{aligned}$$
(A.4)

Proof

This is proved by the same argument as in the proof of Theorem 1 of Cheng and Liu (2001). \(\square \)

Proof of Theorem 1

Let \(\epsilon >0\) be an arbitrary real number. Following the proof of Theorem 1 of Cheng and Liu (2001), we show that for any closed subset S of \(\varGamma ^{\psi }\) with \(\text {dis}\{ S, \varGamma ^{\psi }(\varvec{\eta }^{0})\} \ge \epsilon \),

$$\begin{aligned} P_{0}\left\{ \lim _{n\rightarrow \infty }\sup _{\varvec{\eta }\in S}\frac{\prod _{i=1}^{n}f^{\psi }(\varTheta _{i}|\varvec{\eta })}{\prod _{i=1}^{n}f^{\psi }(\varTheta _{i}|\varvec{\eta }^{0})}=0\right\} =1. \end{aligned}$$

By using Lemma 2 and arguing as in the proof of Theorem 2 of Wald (1949) with the Heine–Borel theorem, there exist finite points \(\varvec{\eta }^{*j}\in S\)\((j=1, \ldots , J)\) and their neighborhoods \(U^{j}(\varvec{\eta }^{*j})\)\((j=1, \ldots , J)\) such that \(S\subseteq \cup _{j=1}^{J}U^{j}(\varvec{\eta }^{*j})\) and

$$\begin{aligned}&E_{0}\left\{ \log \sup _{\varvec{\eta }\in U^{j}(\varvec{\eta }^{*j})}f^{\psi }(\varTheta |\varvec{\eta })\right\} <E_{0}\left\{ \log f^{\psi }(\varTheta |\varvec{\eta }^{0})\right\} . \end{aligned}$$
(A.5)

Note that inequality (A.5) corresponds to inequality (A.4). By contrast, for any \(\varvec{\eta }\), the probability that \(f^{\psi }(\varTheta _{i}|\varvec{\eta })\) is zero for some \(i\in {\mathbb {N}}\) is

$$\begin{aligned} P_{0}\left\{ \bigcup _{i=1}^{\infty }\{ \varTheta _{i}\in [0,2\pi )|f(\varTheta _{i}|\varvec{\eta })=0\}\right\}&\le \sum _{i=1}^{\infty }P_{0}\left\{ \varTheta _{i}\in [0,2\pi )|f(\varTheta _{i}|\varvec{\eta })=0\right\} =0. \end{aligned}$$
(A.6)

Thus, this event is a null set, and hence is negligible. Using the strong law of large numbers and inequality (A.5), we have

$$\begin{aligned}&\frac{1}{n}\sum _{i=1}^{n}\log \sup _{\varvec{\eta }\in U^{j}(\varvec{\eta }^{*j})}f(\varTheta _{i} |\varvec{\eta }) -\frac{1}{n}\sum _{i=1}^{n}\log f(\varTheta _{i} |\varvec{\eta }^{0})\nonumber \\&\quad {\mathop {\longrightarrow }\limits ^{\text {a.s.}}} E_{0}\left\{ \log \sup _{\varvec{\eta }\in U^{j}(\varvec{\eta }^{*j})}f(\varTheta |\varvec{\eta })\right\} -E_{0}\left\{ \log f(\varTheta |\varvec{\eta }^{0})\right\} <0, \end{aligned}$$
(A.7)

where the symbol \({\mathop {\longrightarrow }\limits ^{\text {a.s.}}}\) stands for almost sure convergence. Note that expression (A.7) is well-defined almost everywhere under the true probability distribution from Eq. (A.6). Thus, we have

$$\begin{aligned}&\sup _{\varvec{\eta }\in S}\frac{\prod _{i=1}^{n}f^{\psi }(\varTheta _{i}|\varvec{\eta })}{\prod _{i=1}^{n}f^{\psi }(\varTheta _{i}|\varvec{\eta }^{0})} \nonumber \\&\quad \le \sum _{j=1}^{J}\exp \left\{ n\left( \frac{1}{n}\sum _{i=1}^{n}\log \sup _{\varvec{\eta }\in U^{j}(\varvec{\eta }^{*j})}f(\varTheta _{i} |\varvec{\eta }) -\frac{1}{n}\sum _{i=1}^{n}\log f(\varTheta _{i} |\varvec{\eta }^{0})\right) \right\} \nonumber \\&\qquad {\mathop {\longrightarrow }\limits ^{\text {a.s.}}} 0\quad (n\rightarrow \infty ). \end{aligned}$$
(A.8)

The rest is proved by arguing as in the proof of Theorem 2 of Wald (1949), with the Euclidean distance \(||\bullet -\theta _{0}||\) replaced by \(\text {dis}\{ \bullet , \varGamma ^{\psi }(\varvec{\eta }^{0})\}\). \(\square \)

To prove Proposition 1, the following two lemmas are needed.

Lemma 3

For any \(\alpha >0\), there exists a constant \(c_{1}>0\) such that \(|\log x|\le \{ 1-(x-1)^{2}\}^{-\alpha }\) for any \(x\in (0,c_{1})\).

Proof

For any \(x\in (0,1)\), \(\{ 1-(x-1)^{2}\}^{-\alpha }>0\) holds. Hence, it suffices to show that

$$\begin{aligned} \lim _{x\rightarrow +0}\frac{|\log x|}{\{ 1-(x-1)^{2}\}^{-\alpha }}=0. \end{aligned}$$
(A.9)

This is proved by using l’Hospital’s rule. \(\square \)

Lemma 4

For any \(\alpha \in (0,1/2)\), it follows that

$$\begin{aligned}&\int _{0}^{1}\left\{ 1-(x-1)^{2}\right\} ^{-(\alpha +1/2)}dx=\int _{1}^{2}\left\{ 1-(x-1)^{2}\right\} ^{-(\alpha +1/2)}dx \nonumber \\&\quad =\frac{1}{2}B \left( \frac{1}{2},\frac{-2\alpha +1}{2}\right) , \end{aligned}$$
(A.10)

where \(B \left( \frac{1}{2},\frac{-2\alpha +1}{2}\right) \) denotes the beta function with parameters 1 / 2 and \((-2\alpha +1)/2\).

Proof

Using integration by substitution with \(x-1=\sin \theta \), the left-hand side becomes \(\int _{0}^{\pi /2}(\cos \theta )^{-2\alpha }d\theta \). If \(\alpha <1/2\), this is represented by \((1/2)B \left( \frac{1}{2},\frac{-2\alpha +1}{2}\right) \). \(\square \)

Proof of Proposition 1

\(\varPsi (\hat{\varvec{\gamma }}_{ML})\in \text {argmax}_{\varvec{\eta }\in \varGamma ^{\psi }}\sum _{i=1}^{n}\log f^{\psi }_{MSRS}(\theta _{i}|\varvec{\eta })\) is obvious. In addition, it follows from \(\varvec{\eta }^{0}=\varPsi (\varvec{\gamma }^{0})\) that \(\varPsi (\varGamma (\varvec{\gamma }^{0}))=\varGamma ^{\psi }(\varvec{\eta }^{0})\). We show that conditions [B1]–[B3] imply [A1]–[A5]. Without loss of generality, we have only to show that the first component \(f_{SRS}(\theta |\varvec{\eta }_{j})\) with \(j=1\) satisfies the conditions [A1]–[A5]. First, we check conditions [A1] and [A2] for density (4) with \(\psi (\mu )\) replaced by \(\varvec{\mu }_{1}\),

$$\begin{aligned} f^{\psi }_{SRS}(\theta |\varvec{\mu }_{1},\varvec{\rho }_{1},\lambda _{1})=c_{\varvec{\rho }_{1}}h_{\varvec{\rho }_{1}}(\psi (\theta )^{T}\varvec{\mu }_{1})2\varPi \left\{ \lambda \varvec{\mu }_{1}^{T}\begin{pmatrix}0 &{} 1\\ -1 &{} 0\end{pmatrix} \psi (\theta )\right\} , \end{aligned}$$
(A.11)

where \(\varvec{\mu }_{1}=(\mu _{11},\mu _{12})^{T}\in {\mathcal {S}}^{1}\). Let \({\tilde{\mu }}_{1}:=\text {arg}(\mu _{11}+\mathrm {i}\mu _{12})\) be the argument of the complex number \(\mu _{11}+\mathrm {i}\mu _{12}\). Because \(0\le \varPi (x)\le 1\) and \(\psi (\theta )^{T}\varvec{\mu }_{1}=\cos (\theta -{\tilde{\mu }}_{1})\), it follows from [B1] that there exists a constant \(M>0\) such that for any \(\theta \in [0,2\pi )\),

$$\begin{aligned}&\sup _{\varvec{\mu }_{1}\in {\mathcal {S}}^{1}, \varvec{\rho }_{1}\in K, \lambda _{1}\in [-1,1]}f^{\psi }_{SRS}(\theta |\varvec{\mu }_{1},\varvec{\rho }_{1},\lambda _{1}) \nonumber \\&\quad \le 2\sup _{\varvec{\mu }_{1}\in {\mathcal {S}}^{1}, \varvec{\rho }_{1}\in K}c_{\varvec{\rho }_{1}}h_{\varvec{\rho }_{1}}\left( \psi (\theta )^{T}\varvec{\mu }_{1}\right) \nonumber =2\sup _{\xi \in [0,2\pi ), \varvec{\rho }_{1}\in K}c_{\varvec{\rho }_{1}}h_{\varvec{\rho }_{1}}\left( \cos \xi \right) \nonumber \\&\quad \le 2M. \end{aligned}$$
(A.12)

Therefore, we have [A1]. [A2] follows from [A1] immediately.

Next, we show condition [A3], that is, \(E_{\varvec{\eta }_{1}^{0}}\left\{ \log f_{SRS}^{\psi }(\varTheta |\varvec{\eta }_{1})\right\} >-\infty \) for any \(\varvec{\eta }_{1}=(\varvec{\mu }_{1}^{T},\varvec{\rho }_{1}^{T},\lambda _{1})^{T}\). Because it is obvious that \(\left| E_{\varvec{\eta }_{1}^{0}}\left\{ \log f_{SRS}^{\psi }(\varTheta |\varvec{\eta }_{1})\right\} \right| \) is bounded for \(\varvec{\eta }_{1}\) with \(-1<\lambda _{1} <1\), we have only to prove it for \(\varvec{\eta }_{1}\) with \(\lambda _{1} =-1\) or 1. Setting the range of \(\varTheta \) to \(\{ \theta |{\tilde{\mu }}_{1}\le \theta <{\tilde{\mu }}_{1} +2\pi \}\) and applying integration by parts with \(\theta ={\tilde{\theta }}-{\tilde{\mu }}_{1}\) yield

$$\begin{aligned}&E_{\varvec{\eta }_{1}^{0}}\left[ \log f_{SRS}^{\psi }(\varTheta |\varvec{\eta }_{1})\right] \nonumber \\&\quad =\int _{{\tilde{\mu }}_{1}}^{{\tilde{\mu }}_{1}+2\pi }\log \left[ f_{0}({\tilde{\theta }}|{\tilde{\mu }}_{1},\varvec{\rho }_{1})2\varPi \left\{ \lambda _{1}\sin ({\tilde{\theta }}-{\tilde{\mu }}_{1})\right\} \right] f_{SRS}^{\psi }({\tilde{\theta }}|\varvec{\eta }_{1}^{0})d{\tilde{\theta }} \nonumber \\&\quad =\int _{0}^{2\pi }\log \left[ f_{0}(\theta |0,\varvec{\rho }_{1})2\varPi \left( \lambda _{1}\sin \theta \right) \right] f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta , \end{aligned}$$
(A.13)

where the function \(f_{0}\) is defined in [B1]. Here, we consider the case \(\lambda _{1}=-1\). Then, Eq. (A.13) becomes

$$\begin{aligned}&\int _{\pi /2-\epsilon }^{\pi /2+\epsilon }\log \left[ f_{0}(\theta |0,\varvec{\rho }_{1})2\varPi \left\{ (-1)\sin \theta \right\} \right] f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta \end{aligned}$$
(A.14)
$$\begin{aligned}&\quad +\,\int _{[0,2\pi )\backslash [\pi /2-\epsilon , \pi /2+\epsilon ]}\log \left[ f_{0}(\theta |0,\varvec{\rho }_{1})2\varPi \left\{ (-1)\sin \theta \right\} \right] f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta , \end{aligned}$$
(A.15)

where \(\epsilon >0\) is an arbitrary positive number. In (A.14), it follows from [B3] that there exist \(s_{j}>0\)\((j=1,2,3)\) such that for any \(\theta \) with \(1-s_{3}<\sin \theta \le 1\),

$$\begin{aligned} \varPi \left\{ (-1)\sin \theta \right\} \ge s_{1}\{ 1+(-1)\sin \theta \}^{s_{2}}. \end{aligned}$$
(A.16)

Hence, we choose \(\epsilon >0\) for the interval \([\pi /2-\epsilon , \pi /2+\epsilon ]\) of \(\theta \) to be a subset in the set \(\{ \theta \in [0,2\pi )|1-s_{3}<\sin \theta \le 1\}\). Meanwhile, since \(\varPi (x)\) is an increasing function in \(x\in {\mathbb {R}}\), it follows that for any \(\theta \in [0,2\pi )\backslash [\pi /2-\epsilon , \pi /2+\epsilon ]\)

$$\begin{aligned} \varPi \left\{ (-1)\sin \theta \right\} \ge \varPi \left\{ (-1)\sin (\pi /2-\epsilon ) \right\} . \end{aligned}$$
(A.17)

By applying inequalities (A.16) and (A.17) to terms (A.14) and (A.15), respectively, Eq. (A.13) is bounded below by

$$\begin{aligned}&\int _{\pi /2-\epsilon }^{\pi /2+\epsilon }\log \left[ f_{0}(\theta |0,\varvec{\rho }_{1})2s_{1}\{ 1+(-1)\sin \theta \}^{s_{2}}\right] f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta \nonumber \\&\quad + \int _{[0,2\pi )\backslash [\pi /2-\epsilon , \pi /2+\epsilon ]}\log \left[ f_{0}(\theta |0,\varvec{\rho }_{1})2\varPi \left\{ (-1)\sin (\pi /2-\epsilon )\right\} \right] f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta . \end{aligned}$$
(A.18)

Therefore, it suffices to show that the absolute value of Eq. (A.18) is finite. The absolute value of Eq. (A.18) is bounded above by

$$\begin{aligned}&\int _{\pi /2-\epsilon }^{\pi /2+\epsilon }\left| \log f_{0}(\theta |0,\varvec{\rho }_{1})\right| f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta \nonumber \\&\qquad +\int _{\pi /2-\epsilon }^{\pi /2+\epsilon }\left| \log \{ 2s_{1}(1+(-1)\sin \theta )^{s_{2}}\}\right| f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta \nonumber \\&\qquad + \int _{[0,2\pi )\backslash [\pi /2-\epsilon , \pi /2+\epsilon ]}\left| \log f_{0}(\theta |0,\varvec{\rho }_{1})\right| f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta \nonumber \\&\qquad +\underbrace{\left| \log 2\varPi \left\{ (-1)\sin (\pi /2-\epsilon )\right\} \right| }_{M_{\epsilon }} \int _{[0,2\pi )\backslash [\pi /2-\epsilon , \pi /2+\epsilon ]} f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta \nonumber \\&\quad \le \int _{0}^{2\pi }\left| \log f_{0}(\theta |0,\varvec{\rho }_{1})\right| f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta \nonumber \\&\qquad +\int _{\pi /2-\epsilon }^{\pi /2+\epsilon }|\log (2s_{1})| f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta \nonumber \\&\qquad +\int _{\pi /2-\epsilon }^{\pi /2+\epsilon }s_{2}\left| \log \{ 1+(-1)\sin \theta \}\right| f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta +M_{\epsilon }\nonumber \\&\quad \le \int _{0}^{2\pi }\left| \log f_{0}(\theta |0,\varvec{\rho }_{1})\right| f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta \end{aligned}$$
(A.19)
$$\begin{aligned}&\qquad +s_{2}\int _{0}^{2\pi }\left| \log \{ 1+(-1)\sin \theta \}\right| f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})d\theta \nonumber \\&\qquad +|\log 2s_{1}|+M_{\epsilon }. \end{aligned}$$
(A.20)

By [B1], \(|\log f_{0}(\theta |0,\varvec{\rho }_{1})|\le \log M\) for some constant \(M>1\), and hence, integral (A.19) is bounded above by \(\log M\). Next, we evaluate term (A.20). Let \(\varvec{\mu }_{1}^{0}=(\mu _{11}^{0},\mu _{12}^{0})^{T}\in {\mathcal {S}}^{1}\) and let \({\tilde{\mu }}_{1}^{0}:=\text {arg}(\mu _{11}^{0}+\mathrm {i}\mu _{12}^{0})\). Then, we have

$$\begin{aligned} f_{SRS}^{\psi }(\theta +{\tilde{\mu }}_{1}|\varvec{\eta }_{1}^{0})&=c_{\varvec{\rho }_{1}^{0}}h_{\varvec{\rho }_{1}^{0}}(\cos (\theta +{\tilde{\mu }}_{1}-{\tilde{\mu }}_{1}^{0}))\left\{ 1+\lambda _{1}^{0}\sin (\theta +{\tilde{\mu }}_{1}-{\tilde{\mu }}_{1}^{0})\right\} \nonumber \\&=f_{SRS}(\theta |{\tilde{\mu }}_{1}^{0}-{\tilde{\mu }}_{1},\varvec{\rho }_{1}^{0},\lambda _{1}^{0}) \le M_{2},\qquad \text {for some }M_{2}>0, \end{aligned}$$

where the last inequality holds from [B1]. Hence, the integral part in (A.20) is bounded above by

$$\begin{aligned}&M_{2} \int _{0}^{2\pi }|\log \left\{ 1+\lambda _{1} \sin (\theta )\right\} |d\theta \nonumber \\&\quad \le M_{2} \int _{[0,\pi /2)\cup [3\pi /2, 2\pi )}|\log \left\{ 1+\lambda _{1} \sin (\theta )\right\} |d\theta +M_{2} \int _{\pi /2}^{3\pi /2} |\log \left\{ 1+\lambda _{1} \sin (\theta )\right\} |d\theta \nonumber \\&\quad =M_{2} \int _{-\pi /2}^{\pi /2}|\log \left\{ 1+\lambda _{1} \sin (\theta )\right\} |d\theta +M_{2} \int _{\pi /2}^{3\pi /2} |\log \left\{ 1+\lambda _{1} \sin (\theta )\right\} |d\theta . \end{aligned}$$
(A.21)

We evaluate the first term in (A.21). For \(x=1+\lambda _{1} \sin \theta \)\((\lambda _{1}\ne 0)\), we have \((d \theta /dx)=\text {sgn} (\lambda _{1} )/ \sqrt{1-(x-1)^{2}}\), where \(\text {sgn} (\lambda _{1})=1\) if \(\lambda _{1}>0\), and \(-1\) if \(\lambda _{1}<0\).

Because \(\lambda _{1}=-1\), for any \(c\in [0,2]\), the first term in (A.21) is

$$\begin{aligned}&M_{2}\int _{0}^{2}|\log x|\frac{1}{\sqrt{1-(x-1)^{2}}}dx \nonumber \\&\quad =M_{2}\int _{0}^{c}|\log (x)|\frac{1}{\sqrt{1-(x-1)^{2}}}dx +M_{2}\int _{c}^{2}|\log (x)|\frac{1}{\sqrt{1-(x-1)^{2}}}dx. \end{aligned}$$
(A.22)

Using Lemma 3, we choose \(\alpha \in (0,1/2)\) and \(c\in (0,1)\) such that expression (A.22) is bounded above by

$$\begin{aligned}&M_{2}\int _{0}^{c}\frac{1}{\{ 1-(x-1)^{2}\}^{\alpha }}\frac{1}{\sqrt{1-(x-1)^{2}}}dx+M_{2}\log 2\int _{c}^{2}\frac{1}{\sqrt{1-(x-1)^{2}}}dx \\&\quad =M_{2}\int _{0}^{c}\{ 1-(x-1)^{2}\}^{-\alpha -1/2}dx+M_{2}\log 2\int _{c}^{2}\{1-(x-1)^{2}\}^{-1/2}dx \\&\quad \le M_{3}\qquad \hbox { for some}\ M_{3}>0, \end{aligned}$$

where the last inequality holds from Lemma 4.

Hence, the first term in (A.21) is bounded. By the same argument, the second term in Eq. (A.21) is bounded, and hence, [A3] is verified under \(\lambda _{1}=-1\). Because the case \(\lambda _{1} =1\) is similarly proved, [A3] holds under assumptions [B1]–[B3]. [A4] is obvious from [B2]. Finally, we check condition [A5]. If \(\lambda _{1}=-1\), then \(\mathcal{N}(\varvec{\eta }_{1})\), which is defined in assumptions [A1]–[A5], becomes a single-point set and hence, \(P_{0}\{ \mathcal{N}(\varvec{\eta }_{1})\}=0\). If \(\lambda _{1}=1\), then \(\mathcal{N}(\varvec{\eta }_{1})\) also becomes a single-point set. Hence, [A5] holds, which completes the verification of [A1]–[A5].

Finally, we prove the uniform convergence (14). By property 1 of Cheng and Liu (2001), if Eq. (13) in Proposition 1 holds, then there exists a sequence \(\{ \varvec{\eta }_{n}^{0}\}\subseteq \varGamma ^{\psi }(\varvec{\eta }^{0})\) in which \(||\varPsi (\hat{\varvec{\gamma }}_{ML})-\varvec{\eta }_{n}^{0}||\longrightarrow 0\) a.s. \(P_{0}\). Therefore, it follows from the Lipschitz condition that there exists a constant \(M_{4}>0\) independent of \(\theta \) such that

$$\begin{aligned}&\sup _{\theta \in [0,2\pi )}|f(\theta |\hat{\varvec{\gamma }}_{ML})-f(\theta |\varvec{\gamma }^{0})| \le \sup _{\theta \in [0,2\pi )}|f^{\psi }(\theta |\varPsi (\hat{\varvec{\gamma }}_{ML}))-f^{\psi }(\theta |\varvec{\eta }_{n}^{0})| \\&\quad \le \sup _{\theta \in [0,2\pi )}M_{4} ||\varPsi (\hat{\varvec{\gamma }}_{ML})-\varvec{\eta }_{n}^{0}|| \longrightarrow 0\qquad (n\rightarrow \infty ),\quad {a.s.}~P_{0} \end{aligned}$$

which completes the proof. \(\square \)

Proof of Proposition 2

To prove Proposition 2, we give the following lemma.

Lemma 5

  1. (a)

    For any \(\zeta \in (-2\pi , 2\pi )\backslash \{ 0 \}\),

    $$\begin{aligned} \frac{1}{n}\sum _{p=0}^{n-1}\exp (\mathrm {i}p\zeta ) \rightarrow 0 \qquad (n\rightarrow \infty ). \end{aligned}$$
  2. (b)

    For any \(\xi \in {\mathbb {R}}\) and r with \(0\le r<1\),

    $$\begin{aligned} \frac{1}{n}\sum _{p=0}^{n-1}\exp (\mathrm {i}p\xi )r^{p} \rightarrow 0 \qquad (n\rightarrow \infty ). \end{aligned}$$

The proof is elementary and hence, is omitted. The proof is also available from the corresponding author on request.

Proof of Proposition 2

Here, we use the characteristic function of the SSWC distribution

$$\begin{aligned} E\left\{ \exp (\mathrm {i}p\varTheta )\right\}&=E\left\{ \cos (p\varTheta )\right\} +\mathrm {i} E\left\{ \sin (p\varTheta )\right\} \nonumber \\&=\exp (\mathrm {i}p\mu )\left\{ \rho ^{|p|}+\mathrm {i}(\rho ^{|p-1|}-\rho ^{|p+1|})\frac{\lambda }{2}\right\} . \end{aligned}$$
(A.23)

For simplicity, if \(p\in {\mathbb {N}}\), (A.23) is written as \(E\left\{ \exp (\mathrm {i}p\varTheta )\right\} =\exp (\mathrm {i}p\mu )\rho ^{p}H(\rho , \lambda )\) where \(H(\rho , \lambda )=1+\mathrm {i}(\rho ^{-1}-\rho )\lambda /2\).

Assume that for any \(\varvec{\gamma }_{1}\) and \(\varvec{\gamma }_{1}^{*}\) in \(\varGamma _{mswc}^{\dag }\),

$$\begin{aligned}&\alpha _{1}f_{swc}(\theta |\mu _{1},\rho _{1},\lambda _{1})+\alpha _{2}f_{swc}(\theta |\mu _{2},\rho _{2},\lambda _{2})\nonumber \\&\quad =\alpha _{1}^{*}f_{swc}(\theta |\mu _{1}^{*},\rho _{1}^{*},\lambda _{1}^{*})+\alpha _{2}^{*}f_{swc}(\theta |\mu _{2}^{*},\rho _{2}^{*},\lambda _{2}^{*}). \end{aligned}$$
(A.24)

We divide the proof into the following four steps, and give the proof for each step under assumption (A.24).

Step 1:

(A.24) implies \(\rho _{1}<\rho _{2}^{*}\) and \(\rho _{1}^{*}<\rho _{2}\).

Step 2:

(A.24) and the result of Step 1 imply \(\rho _{2}=\rho _{2}^{*}\).

Step 3:

(A.24) and the results of Steps 1–2 imply \(\mu _{2}=\mu _{2}^{*}\).

Step 4:

(A.24) and the results of Steps 1–3 imply \(\alpha _{2}=\alpha _{2}^{*}\) and \(\lambda _{2}=\lambda _{2}^{*}\).

Proof of Step 1

We employ proof by contradiction. Assume that \(\rho _{1}\ge \rho _{2}^{*}\). Then, we have \(\rho _{1}^{*}<\rho _{2}^{*}\le \rho _{1}<\rho _{2}\). Taking the characteristic functions of both sides in Eq. (A.24), letting \(p\ge 1\) and dividing it by \(\exp (\mathrm {i}p\mu _{2})\rho _{2}^{p}\) yields

$$\begin{aligned}&\alpha _{1}\exp ( \mathrm {i}p(\mu _{1}-\mu _{2}))\left( \frac{\rho _{1}}{\rho _{2}} \right) ^{p}H(\rho _{1},\lambda _{1})+\alpha _{2}H(\rho _{2},\lambda _{2}) \nonumber \\&\quad =\alpha _{1}^{*}\exp (\mathrm {i}p(\mu _{1}^{*}-\mu _{2}))\left( \frac{\rho _{1}^{*}}{\rho _{2}} \right) ^{p}H(\rho _{1}^{*},\lambda _{1}^{*})\nonumber \\&\qquad +\alpha _{2}^{*}\exp ( \mathrm {i}p(\mu _{2}^{*}-\mu _{2}))\left( \frac{\rho _{2}^{*}}{\rho _{2}} \right) ^{p}H(\rho _{2}^{*},\lambda _{2}^{*}). \end{aligned}$$
(A.25)

Because \(\left| \exp ( \mathrm {i}p(\mu _{1}-\mu _{2}))(\rho _{1}/\rho _{2})^{p}\right| \le (\rho _{1}/\rho _{2})^{p}\rightarrow 0\)\((p\rightarrow \infty )\), letting \(p\rightarrow \infty \), we have \(\alpha _{2}H(\rho _{2},\lambda _{2})=0\). We have \(\alpha _{2}=0\) because of \(H(\rho _{2},\lambda _{2})\ne 0\), which contradicts assumption \(\alpha _{2}>0\). The case of \(\rho _{1}^{*}<\rho _{2}\) is similarly proved.

Proof of Step 2

In this step, we also employ proof by contradiction. Assume that \(\rho _{2}\ne \rho _{2}^{*}\). First, we consider the case \(\rho _{2}<\rho _{2}^{*}\).

Taking the characteristic functions of both sides in Eq. (A.24), letting \(p\ge 1\) and dividing it by \(\exp (\mathrm {i}p\mu _{2}^{*})\rho _{2}^{*p}\) yields

$$\begin{aligned}&\alpha _{1}\exp ( \mathrm {i}p(\mu _{1}-\mu _{2}^{*}))\left( \frac{\rho _{1}}{\rho _{2}^{*}} \right) ^{p}H(\rho _{1},\lambda _{1})\nonumber \\&\qquad +\alpha _{2}\exp ( \mathrm {i}p(\mu _{2}-\mu _{2}^{*}))\left( \frac{\rho _{2}}{\rho _{2}^{*}} \right) ^{p}H(\rho _{2},\lambda _{2}) \nonumber \\&\quad =\alpha _{1}^{*}\exp (\mathrm {i}p(\mu _{1}^{*}-\mu _{2}^{*}))\left( \frac{\rho _{1}^{*}}{\rho _{2}^{*}} \right) ^{p}H(\rho _{1}^{*},\lambda _{1}^{*})+\alpha _{2}^{*}H(\rho _{2}^{*},\lambda _{2}^{*}). \end{aligned}$$
(A.26)

Using the result of Step 1 and taking \(p\rightarrow \infty \), we have \(0=\alpha _{2}^{*}H(\rho _{2}^{*},\lambda _{2}^{*})\). Because \(H(\rho _{2}^{*},\lambda _{2}^{*})\ne 0\), we have \(\alpha _{2}^{*}=0\), which contradicts the assumption. The case of \(\rho _{2}^{*}<\rho _{2}\) is similarly proved.

Proof of Step 3

In the third step, we also employ proof by contradiction. Assume that \(\mu _{2}\ne \mu _{2}^{*}\).

Substituting the result (\(\rho _{2}=\rho _{2}^{*}\)) of Step 2 in Eq. (A.26) yields

$$\begin{aligned}&\alpha _{1}\exp ( \mathrm {i}p(\mu _{1}-\mu _{2}^{*}))\left( \frac{\rho _{1}}{\rho _{2}} \right) ^{p}H(\rho _{1},\lambda _{1})+\alpha _{2}\exp ( \mathrm {i}p(\mu _{2}-\mu _{2}^{*}))H(\rho _{2},\lambda _{2}) \nonumber \\&\quad =\alpha _{1}^{*}\exp (\mathrm {i}p(\mu _{1}^{*}-\mu _{2}^{*}))\left( \frac{\rho _{1}^{*}}{\rho _{2}} \right) ^{p}H(\rho _{1}^{*},\lambda _{1}^{*})+\alpha _{2}^{*}H(\rho _{2},\lambda _{2}^{*}). \end{aligned}$$
(A.27)

Because this equation holds for each \(p\in {\mathbb {N}}\), we have

$$\begin{aligned}&\alpha _{1}\left\{ \frac{1}{n}\sum _{p=0}^{n-1}\exp ( \mathrm {i}p(\mu _{1}-\mu _{2}^{*}))\left( \frac{\rho _{1}}{\rho _{2}} \right) ^{p}\right\} H(\rho _{1},\lambda _{1})\nonumber \\&\qquad +\alpha _{2}\left\{ \frac{1}{n}\sum _{p=0}^{n-1}\exp ( \mathrm {i}p(\mu _{2}-\mu _{2}^{*}))\right\} H(\rho _{2},\lambda _{2}) \nonumber \\&\qquad -\frac{1}{n}\alpha _{1}H(\rho _{1},\lambda _{1})-\frac{1}{n}\alpha _{2}H(\rho _{2},\lambda _{2})\nonumber \\&\quad =\alpha _{1}^{*}\left\{ \frac{1}{n}\sum _{p=0}^{n-1}\exp (\mathrm {i}p(\mu _{1}^{*}-\mu _{2}^{*}))\left( \frac{\rho _{1}^{*}}{\rho _{2}} \right) ^{p}\right\} H(\rho _{1}^{*},\lambda _{1}^{*})+\frac{n-1}{n}\alpha _{2}^{*}H(\rho _{2},\lambda _{2}^{*}) \nonumber \\&\qquad -\frac{1}{n}\alpha _{1}^{*}H(\rho _{1}^{*},\lambda _{1}^{*}). \end{aligned}$$
(A.28)

Because \(\mu _{2}-\mu _{2}^{*}\) is a value in \((-2\pi , 2\pi )\backslash \{ 0\}\), as \(n\rightarrow \infty \), it follows from Lemma 5 that \(\alpha _{2}^{*}H(\rho _{2},\lambda _{2}^{*})=0\). Hence, from \(H(\rho _{2},\lambda _{2}^{*})\ne 0\), we have \(\alpha _{2}^{*}=0\), which contradicts \(\alpha _{2}^{*}>0\). Hence, we have \(\mu _{2}\ne \mu _{2}^{*}\).

Proof of Step 4

Substituting the results (\(\rho _{2}=\rho _{2}^{*}\) and \(\mu _{2}=\mu _{2}^{*}\)) of Steps 2 and 3 in Eq. (A.28) yields

$$\begin{aligned}&\alpha _{1}\exp ( \mathrm {i}p(\mu _{1}-\mu _{2}))\left( \frac{\rho _{1}}{\rho _{2}} \right) ^{p}H(\rho _{1},\lambda _{1})+\alpha _{2}H(\rho _{2},\lambda _{2}) \nonumber \\&\quad =\alpha _{1}^{*}\exp (\mathrm {i}p(\mu _{1}^{*}-\mu _{2}))\left( \frac{\rho _{1}^{*}}{\rho _{2}} \right) ^{p}H(\rho _{1}^{*},\lambda _{1}^{*})+\alpha _{2}^{*}H(\rho _{2},\lambda _{2}^{*}). \end{aligned}$$
(A.29)

Letting \(p\rightarrow \infty \) in this equation, we have \(\alpha _{2}H(\rho _{2},\lambda _{2})=\alpha _{2}^{*}H(\rho _{2},\lambda _{2}^{*})\). By comparing the real and imaginary parts, \(\alpha _{2}=\alpha _{2}^{*}\) and \(\lambda _{2}=\lambda _{2}^{*}\).

Through Steps 1–4, we have \(\alpha _{1}f_{swc}(\theta |\mu _{1},\rho _{1},\lambda _{1})=\alpha _{1}^{*}f_{swc}(\theta |\mu _{1}^{*},\rho _{1}^{*},\lambda _{1}^{*})\). Because the integral from 0 to \(2\pi \) of each \(f_{swc}(\theta |\mu _{j},\rho _{j},\lambda _{j})\) is one, we have \(\alpha _{1}=\alpha _{1}^{*}\) and hence, \(f_{swc}(\theta |\mu _{1},\rho _{1},\lambda _{1})=f_{swc}(\theta |\mu _{1}^{*},\rho _{1}^{*},\lambda _{1}^{*})\). Consequently, using the identifiability of SSWC distribution (Miyata et al. 2019), we obtain \((\mu _{1},\rho _{1},\lambda _{1})^{T}=(\mu _{1}^{*},\rho _{1}^{*},\lambda _{1}^{*})^{T}\), which completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyata, Y., Shiohama, T. & Abe, T. Estimation of finite mixture models of skew-symmetric circular distributions. Metrika 83, 895–922 (2020). https://doi.org/10.1007/s00184-019-00756-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-019-00756-z

Keywords

Navigation