Skip to main content
Log in

Estimation for varying coefficient panel data model with cross-sectional dependence

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

This paper describes a method for estimation and inference with a nonparametric varying coefficients panel data model that allows for cross-sectional dependence and heteroscedasticity, wherein the time series length T is larger than the cross-sectional size N. We first eliminate fixed effects by taking the cross-sectional average, and then use a local linear approach to obtain the initial estimator of the unknown coefficient functions. However, the initial estimator ignores the cross-sectional dependence and heteroscedasticity, which will lead to a loss of efficiency. Thus, we propose a weighted local linear method to obtain a more efficient estimator. In the theoretical part of the paper, we derive the asymptotic theory of the resulting estimator. Simulation results and a real data analysis are provided to illustrate the finite sample performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn SC, Lee YH, Schmidt P (2001) GMM estimation of linear panel data models with time-varying individual effects. J Econom 101:219–255

    Article  MathSciNet  Google Scholar 

  • Bai J (2003) Inferential theory for factor models of large dimensions. Econometrica 71:135–171

    Article  MathSciNet  Google Scholar 

  • Bai J (2009) Panel data models with interactive fixed effects. Econometrica 77:1229–1279

    Article  MathSciNet  Google Scholar 

  • Cai Z, Li Q (2008) Nonparametric estimation of varying coefficient dynamic panel data models. Econom Theory 24:1321–1342

    Article  MathSciNet  Google Scholar 

  • Cai Z, Fan J, Yao Q (2000) Functional-coefficient regression models for nonlinear time series. J Am Stat Assoc 95:941–956

    Article  MathSciNet  Google Scholar 

  • Elhorst JP (2003) Specification and estimation of spatial panel data models. Int Reg Sci Rev 26:244–268

    Article  Google Scholar 

  • Fan JCC, Gijbels R (1996) Local polynomial modelling and its applications, vol 66. Chapman & Hall, London

    MATH  Google Scholar 

  • Fan J, Zhang C, Zhang J (2001) Generalized likelihood ratio statistics and wilks phenomenon. Ann Stat 29:153–193

    Article  MathSciNet  Google Scholar 

  • Feng G, Gao J, Peng B, Zhang X (2017) A varying-coefficient panel data model with fixed effects: theory and an application to US commercial banks. J Econom 196:68–82

    Article  MathSciNet  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships, vol 13. Wiley, Berlin

    MATH  Google Scholar 

  • Hastie T, Tibshirani R (1993) Varying-coefficient models. J R Stat Soc 55:757–796

    MathSciNet  MATH  Google Scholar 

  • Henderson DJ, Carroll RJ, Li Q (2008) Nonparametric estimation and testing of fixed effects panel data models. J Econom 144:257–275

    Article  MathSciNet  Google Scholar 

  • Huang X (2013) Nonparametric estimation in large panels with cross sectional dependence. Econom Rev 32:754–777

    Article  MathSciNet  Google Scholar 

  • Lee J, Robinson PM (2015) Panel nonparametric regression with fixed effects. J Econom 188:346–362

    Article  MathSciNet  Google Scholar 

  • Li D, Jia C, Gao J (2011) Non-parametric time-varying coefficient panel data models with fixed effects. Econom J 14:387–408

    Article  MathSciNet  Google Scholar 

  • Lin Z, Li Q, Sun Y (2014) A consistent nonparametric test of parametric regression functional form in fixed effects panel data models. J Econom 178:167–179

    Article  MathSciNet  Google Scholar 

  • Pei Y, Huang T, You J (2018) Nonparametric fixed effects model for panel data with locally stationary regressors. J Econom 202:286–305

    Article  MathSciNet  Google Scholar 

  • Pesaran MH (2006) Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 74:967–1012

    Article  MathSciNet  Google Scholar 

  • Robinson PM (1983) Nonparametric estimators for time series. J Time Ser Anal 4:185–207

    Article  MathSciNet  Google Scholar 

  • Robinson PM (2012) Nonparametric trending regression with cross-sectional dependence. J Econom 169:4–14

    Article  MathSciNet  Google Scholar 

  • Zellner A (1962) An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J Am Stat Assoc 57:348–368

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor, associate editor and two anonymous referees for many helpful comments and suggestions, which greatly improved the paper. Liu’s research was supported by Shanghai University of Finance and Economics Innovation Fund for Graduate Student (CXJJ-2017-425). Dr. Pei’s research was partially supported by The Fundamental Research Funds of Shandong University (No. 2018GN050), the Academic Prosperity Program provided by School of Economics, Shandong University and the Taishan Scholar Program of Shandong Province. Dr Xu’s research is financially supported by Projects of National Social Science Fund of China (No. 19BTJ032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunfang Xu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Note that Theorems 1–2 follow immediately from Cai et al. (2000) and Theorem 6 follows immediately from Fan et al. (2001), so we omit the proof details here.

Proof of Theorem 3

\({\widetilde{w}}_{ij}(z)-w_{ij}(z)\) can be written as

$$\begin{aligned} {\widetilde{w}}_{ij}(z)-w_{ij}(z)=\frac{\sum \nolimits _{t=1}^TK^{\star }_a (z_t-z)\{{\widehat{U}}_{it}{\widehat{U}}_{jt}-w_{ij}(z)\}}{\sum \nolimits _{t=1}^TK^{\star }_a(z_t-z)}=:R_{ij}^{(1)}+R_{ij}^{(2)}, \end{aligned}$$

with

$$\begin{aligned} R_{ij}^{(1)}= & {} \frac{\sum \nolimits _{t=1}^TK^{\star }_a(z_t-z) \{U_{it}U_{jt}-w_{ij}(z)\}}{\sum \nolimits _{t=1}^TK^{\star }_a(z_t-z)},\\ R_{ij}^{(2)}= & {} \frac{\sum \nolimits _{t=1}^TK^{\star }_a(z_t-z) \{{\widehat{U}}_{it}{\widehat{U}}_{jt}-U_{it}U_{jt}\}}{\sum \nolimits _{t=1}^TK^{\star }_a(z_t-z)}. \end{aligned}$$

We can regard \(R_{ij}^{(1)}\) as the estimation error of the usual local constant estimator of the conditional expectation \(E(U_{it}U_{jt}|z_t=z)\). Under the assumptions given in this paper and the results of the local constant estimator, it can be shown that \(|R_{ij}^{(1)}|=O_p(a^2+\frac{1}{\sqrt{Ta}})\) under Assumptions 14. Next, we prove the bound of \(R_{ij}^{(2)}\). Denote \(d_{it}: =\varvec{X}_{it}^{\tau }[\varvec{m}(z_t)-\widehat{\varvec{m}}(z_t)]\), \(e_i: =\frac{1}{T}\sum \nolimits _{s=1 }^T\varvec{X}_{is}^{\tau }[\varvec{m}(z_s)-\widehat{\varvec{m}}(z_s)]\) and \(f_i: =\frac{1}{T}\sum \nolimits _{s=1 }^TU_{is}\). From (22), \({\widehat{U}}_{it} \) can be expressed as follows

$$\begin{aligned} \begin{aligned}&U_{it}+\varvec{X}_{it}^{\tau }[\varvec{m}(z_t)-\widehat{\varvec{m}}(z_t)]-\frac{1}{T-1}\sum \limits _{s\ne t}^T\varvec{X}_{is}^{\tau }[\varvec{m}(z_s)-\widehat{\varvec{m}}(z_s)] -\frac{1}{T-1}\sum \limits _{s\ne t}^TU_{is}\\&\quad =\frac{T}{T-1}\left\{ U_{it}+\varvec{X}_{it}^{\tau }[\varvec{m}(z_t)-\widehat{\varvec{m}}(z_t)]-\frac{1}{T}\sum \limits _{s=1 }^T\varvec{X}_{is}^{\tau }[\varvec{m}(z_s)-\widehat{\varvec{m}}(z_s)]-\frac{1}{T}\sum \limits _{s=1 }^TU_{is}\right\} \\&\quad = U_{it}+\varvec{X}_{it}^{\tau }[\varvec{m}(z_t)-\widehat{\varvec{m}}(z_t)]-\frac{1}{T}\sum \limits _{s=1}^T\varvec{X}_{is}^{\tau }[\varvec{m}(z_s)-\widehat{\varvec{m}}(z_s)]-\frac{1}{T}\sum \limits _{s=1}^T U_{is}\\&\quad =U_{it}+d_{it}-e_i-f_i, \end{aligned} \end{aligned}$$

where using this equality, we can decompose

$$\begin{aligned} \begin{aligned}&{\widehat{U}}_{it}{\widehat{U}}_{jt}-U_{it}U_{jt}=(-U_{it}e_j-U_{it}f_j-U_{jt}e_i-U_{jt}f_i+e_ie_j+f_if_j+e_if_j+e_jf_i)\\&\quad \quad +(U_{it}d_{jt}+U_{jt}d_{it}+d_{it}d_{jt}-d_{it}e_j-d_{jt}e_i-d_{it}f_j-d_{jt}f_i)\\&\quad \overset{\varDelta }{=}I+II. \end{aligned} \end{aligned}$$
(30)

We let \(K^{\star }_t:=K^{\star }_a(z_t-z)\) for brevity. Thus, \(R_{ij}^{(2)}\) can be expressed as

$$\begin{aligned} R_{ij}^{(2)}=\frac{1}{{\widehat{f}}(z)}\frac{1}{Ta}\sum \limits _{s=1}^TK^{\star }_s(I+II), \end{aligned}$$
(31)

where \({\widehat{f}}(z)\) is a nonparametric kernel estimator of f(z):

$$\begin{aligned} {\widehat{f}}(z)=\frac{1}{Ta}\sum \limits _{s=1}^TK^{\star }_s. \end{aligned}$$

Under the assumptions stated in this paper, Lee and Robinson (2015) proved that \({\widehat{f}}(z)\) is consistent. Therefore,

$$\begin{aligned} \frac{1}{{\widehat{f}}(z)}=\frac{1}{f(z)+o_p(1)}=O_p(1). \end{aligned}$$
(32)

Now, we need only find the upper bound of

$$\begin{aligned} \frac{1}{Ta}\sum \limits _{s=1}^TK^{\star }_s(I+II). \end{aligned}$$

Firstly, we prove the bound of \(\frac{1}{Ta}\sum \nolimits _{s=1}^TK^{\star }_sI\).

  1. 1.

    As the \(U_{it}\) are weakly dependent across time and Assumption 3 implies that \(w_{ii},w_{ij}\) are bounded, we have

    $$\begin{aligned} f_i=O_p\left( \frac{1}{\sqrt{T}}\right) . \end{aligned}$$
    (33)

    Additionally, the weak dependence among \((\varvec{X}_{it},z_t)\) and Theorem 1 lead to the following result:

    $$\begin{aligned} e_i=O_p\left( \frac{h^2}{T}+\frac{1}{T\sqrt{h}}\right) . \end{aligned}$$
    (34)
  2. 2.

    Because \(\frac{1}{Ta}\sum \nolimits _{s=1}^TK^{\star }_sU_{is}\) is the consistent estimator of \(E(U_{it}|z_t=z)=0\) with zero bias, we have that

    $$\begin{aligned} \frac{1}{Ta}\sum \limits _{s=1}^TK^{\star }_sU_{is}=O_p \left( \frac{1}{\sqrt{Ta}}\right) . \end{aligned}$$
    (35)

Secondly, we analyze the bound of \(\frac{1}{Ta}\sum \nolimits _{s=1}^TK^{\star }_sII\).

  1. 1.

    For the first term \(\frac{1}{Ta}\sum \nolimits _{s=1}^TK^{\star }_sd_{is}\), we get

    $$\begin{aligned} E\left\{ \frac{1}{Ta}\sum \limits _{s=1}^TK^{\star }_sd_{is}\right\} =E\left\{ E\left\{ \frac{1}{a}K^{\star }_sd_{is}|z_s\right\} \right\} =O(h^2) \end{aligned}$$

    and

    $$\begin{aligned} E\left\{ \frac{1}{Ta}\sum \limits _{s=1}^TK^{\star }_sd_{is}\right\} ^2 =\frac{1}{Ta^2}E\left\{ E\left\{ K^{\star 2}_sd_{is}^2|z_s\right\} \right\} =O\left( \frac{1}{Ta}\left( h^4+\frac{1}{Th}\right) \right) . \end{aligned}$$

    Therefore, the upper bound of \(\frac{1}{Ta}\sum \nolimits _{s=1}^TK^{\star }_sd_{is}\) is

    $$\begin{aligned} \frac{1}{Ta}\sum \limits _{s=1}^TK^{\star }_sd_{is}=O_p \left( h^2+\frac{1}{\sqrt{T^2ha}}\right) . \end{aligned}$$
    (36)
  2. 2.

    Similar to the proof of (36), we have that

    $$\begin{aligned} E\left\{ \frac{1}{Ta}\sum \limits _{s=1}^TK^{\star }_sU_{is}d_{is}\right\} =E\left\{ \frac{1}{a}K^{\star }_sU_{is}d_{is}\right\} =E\left\{ E\left\{ \frac{1}{a}K^{\star }_sU_{is}d_{is}|z_s\right\} \right\} =0. \end{aligned}$$

    and

    $$\begin{aligned} E\left\{ \frac{1}{Ta}\sum \limits _{s=1}^TK^{\star }_sU_{is}d_{is}\right\} ^2 =\frac{1}{Ta}E\left\{ E\left\{ \frac{1}{a}K^{\star 2}_sU_{is}^2d_{is}^2|z_s\right\} \right\} =O\left( \frac{1}{Ta}\left( h^4+\frac{1}{Th}\right) \right) . \end{aligned}$$

    Then, the upper bound of \(\frac{1}{Ta}\sum \nolimits _{s=1}^TK^{\star }_sU_{is}d_{is}\) is

    $$\begin{aligned} \frac{1}{Ta}\sum \limits _{s=1}^TK^{\star }_sU_{is}d_{is} =O_p\left( \frac{h^2}{\sqrt{Ta}}+\frac{1}{\sqrt{T^2ha}}\right) . \end{aligned}$$
    (37)
  3. 3.

    Next, we derive the bound of \(\frac{1}{Ta}\sum \nolimits _{s=1}^TK^{\star }_sd_{is}d_{js}\). Similar to the proof of (37), we have that the bound of \(\frac{1}{Ta}\sum \nolimits _{s=1}^TK^{\star }_sd_{is}d_{js}\) is

    $$\begin{aligned} \frac{1}{Ta}\sum \limits _{s=1}^TK^{\star }_sd_{is}d_{js}=O_p \left( \frac{1}{Th}+h^4\right) . \end{aligned}$$
    (38)

Combining (36)–(38), we conclude that

$$\begin{aligned} R_{ij}^{(2)}=O_p\left( h^2++\frac{1}{Th}+\frac{1}{\sqrt{T^2ha}}\right) , \end{aligned}$$

and \(R_{ij}^{(1)}=O_p\Big (a^2+\frac{1}{\sqrt{Ta}}\Big )\). According to Assumption 6, the following equation holds:

$$\begin{aligned} R_{T,a,h}=a^2+\frac{1}{Th}. \end{aligned}$$

Proof of Theorem 4

We only provide the proof for \(\frac{h_j^{\star }}{{\widehat{h}}_j^{\star }}\overset{P}{\rightarrow }1\), as the proof for \(\frac{{\widetilde{h}}_j^{\star }}{\widehat{{\widetilde{h}}}_j^{\star }}\overset{P}{\rightarrow }1\) follows by the same argument.

$$\begin{aligned} \begin{aligned} h_j^{\star }-{\widehat{h}}_j^{\star }&=\left( \frac{\nu _0}{\mu _2^4T}\right) ^{\frac{1}{5}} \left( \left\{ \frac{\varvec{e}_{j,p}^{\tau }\varvec{1}_N^{T}\varvec{\varSigma }(z) \varvec{1}_N\left( \varvec{V}\varvec{\varOmega }(z)\varvec{V}^{\tau }\right) ^{-1}\varvec{e}_{j,p}}{f(z) (\varvec{m}_j''(z))^2}\right\} ^{\frac{1}{5}}\right. \\&\qquad \left. - \left\{ \frac{\varvec{e}_{j,p}^{\tau }\varvec{1}_N^{T} \widetilde{\varvec{\varSigma }}(z)\varvec{1}_N (\varvec{V}\varvec{\varOmega }(z)\varvec{V}^{\tau })^{-1}\varvec{e}_{j,p}}{{\widehat{f}}(z)(\widehat{\varvec{m}}_j''(z))^2}\right\} ^{\frac{1}{5}}\right) . \end{aligned} \end{aligned}$$
(39)

Let

$$\begin{aligned} \theta _j= & {} \varvec{e}_{j,p}^{\tau }\varvec{1}_N^{T}\varvec{\varSigma }(z)\varvec{1}_N(\varvec{V}\varvec{\varOmega }(z)\varvec{V}^{\tau })^{-1}\varvec{e}_{j,p},\\ {\widehat{\theta }}_j= & {} \varvec{e}_{j,p}^{\tau }\varvec{1}_N^{T}\widetilde{\varvec{\varSigma }}(z)\varvec{1}_N(\varvec{V}\varvec{\varOmega }(z)\varvec{V}^{\tau })^{-1}\varvec{e}_{j,p}. \end{aligned}$$

By the mean value theorem, the second term in (39) is bounded in absolute value by

$$\begin{aligned} |{\widetilde{r}}_1\Vert |\theta _j-{\widehat{\theta }}_j|+|{\widetilde{r}}_2\Vert f(z)-{\widehat{f}}(z)|+|{\widetilde{r}}_3\Vert \varvec{m}_j''(z)-\widehat{\varvec{m}}_j''(z)|, \end{aligned}$$
(40)

where \(r_i,i=1,2,3\) are derivatives of the expression of \(\{\frac{\theta _j}{f(z)(\varvec{m}_j''(z))^2}\}^{\frac{1}{5}}\) with respect to \(\theta _j,f,(m_j'')^2\).

\({\widetilde{r}}_1\) lies in

$$\begin{aligned} \frac{1}{5}\left[ \left( \frac{1}{f(z)(\varvec{m}_j''(z))^2}\right) ^{\frac{1}{5}}\theta _j^{-\frac{4}{5}}, \left( \frac{1}{{\widehat{f}}(z)(\widehat{\varvec{m}}_j''(z))^2}\right) ^{\frac{1}{5}}{\widehat{\theta }}_j^{-\frac{4}{5}}\right] , \end{aligned}$$

\({\widetilde{r}}_2\) lies in

$$\begin{aligned} -\frac{1}{5}\left[ \left( \frac{\theta _j}{(\varvec{m}_j''(z))^2}\right) ^ {\frac{1}{5}}f(z)^{-\frac{6}{5}}, \left( \frac{{\widehat{\theta }}_j}{(\widehat{\varvec{m}}_j''(z))^2}\right) ^{\frac{1}{5}}{\widehat{f}}(z)^{-\frac{6}{5}}\right] , \end{aligned}$$

and \({\widetilde{r}}_3\) lies in

$$\begin{aligned} -\frac{1}{5}\left[ \left( \frac{\theta _j}{f(z)}\right) ^{\frac{1}{5}}((\varvec{m}_j''(z))^2)^{-\frac{6}{5}}, \left( \frac{{\widehat{\theta }}_j}{{\widehat{f}}(z)}\right) ^{\frac{1}{5}}\left( (\widehat{\varvec{m}}_j''(z))^2\right) ^{-\frac{6}{5}}\right] . \end{aligned}$$

Hence, we deduce the upper bound of (40) as

$$\begin{aligned}&O_p\left\{ \theta _j^{-\frac{4}{5}} \left[ |\theta _j-{\widehat{\theta }}_j|+\theta _j|f(z) -{\widehat{f}}(z)|+\theta _j|(\varvec{m}_j''(z))^2-(\widehat{\varvec{m}}_j''(z))^2|\right] \right\} \\&\quad =O_p\left\{ \theta _j^{-\frac{4}{5}} N[\Vert \varvec{\varSigma }(z)-\widetilde{\varvec{\varSigma }}(z)\Vert +\Vert \varvec{\varSigma }(z)\Vert |f(z)-{\widehat{f}}(z)|+\Vert \varvec{\varSigma }(z)\Vert | (\varvec{m}_j''(z))^2-(\widehat{\varvec{m}}_j''(z))^2|\right\} \\&\quad =O_p\left\{ \theta _j^{-\frac{4}{5}}N\Vert \varvec{\varSigma }(z)-\widetilde{\varvec{\varSigma }}(z)\Vert \right\} , \end{aligned}$$

where the last step follows from Assumption 7. Thus, (39) becomes

$$\begin{aligned} h_j^{\star }-{\widehat{h}}_j^{\star }&=O_p\left\{ \left( \frac{\theta _j}{T}\right) ^{\frac{1}{5}}\frac{N}{\theta _j}\Vert \varvec{\varSigma }(z)-\widetilde{\varvec{\varSigma }}(z)\Vert \right\} \\&=O_p\left\{ \left( \frac{\theta _j}{T}\right) ^ {\frac{1}{5}}\Vert \varvec{\varSigma }(z)-\widetilde{\varvec{\varSigma }}(z)\Vert \right\} \\&=o_p\left( \left( \frac{\theta _j}{T}\right) ^{\frac{1}{5}}\right) \\&=o_p(h_j^{\star }). \end{aligned}$$

Proof of Theorem 5

First, we denote \(\varvec{A}=\varvec{I}_T\otimes \varvec{1}_N^{\tau }\), \(\varvec{Y}= (\varvec{Y}_{.1},\ldots ,\varvec{Y}_{.T})\), \(\varvec{Xz}=(\varvec{Xz}^{\tau }_1,\ldots ,\varvec{Xz}^{\tau }_T)^{\tau }\) with the blocks \(\varvec{Xz}_t =(\varvec{X}_{.t}, \varvec{X}_{.t}(z_t-z))\), \(\varvec{B}\) and \(\widetilde{\varvec{B}}\) are both block diagonal matrices with the blocks \(\varvec{\varSigma }^{-\frac{1}{2}}(\varvec{z}_t)\) and \(\widetilde{\varvec{\varSigma }}^{-\frac{1}{2}}(\varvec{z}_t)\) respectively. Thus, we can express \(\varvec{Y}_{\varvec{\varSigma }}\) and \(\varvec{Y}_{\widetilde{\varvec{\varSigma }}}\) as

$$\begin{aligned} \begin{aligned}&\varvec{Y}_{\varvec{\varSigma }}=\frac{1}{N}\varvec{A}\varvec{B}{\text {Vec}}(\varvec{Y}),\qquad \varvec{D}_{\varvec{\varSigma }}(z)=\frac{1}{N}\varvec{A}\varvec{B}\varvec{Xz} ,\\&\varvec{Y}_{\widetilde{\varvec{\varSigma }}}=\frac{1}{N}\varvec{A}\varvec{{\widetilde{B}}}{\text {Vec}}(\varvec{}Y),\qquad \varvec{D}_{\widetilde{\varvec{\varSigma }}}(z)=\frac{1}{N}\varvec{A}\varvec{{\widetilde{B}}}\varvec{Xz}, \end{aligned} \end{aligned}$$

which leads to

$$\begin{aligned} \begin{aligned} \widetilde{\varvec{m}}(z)&=(\varvec{I}_p,\varvec{O}_p)[\varvec{X}_z\varvec{B}\varvec{A}^{\tau }\varvec{W}(z)AB\varvec{X}_z]^{-1}[\varvec{Xz}\varvec{B}\varvec{A}^{\tau }\varvec{W}(z)\varvec{A}\varvec{B}{\text {Vec}}(\varvec{Y})], \\ \widetilde{\varvec{m}}^{*}(z)&=(\varvec{I}_p,\varvec{O}_p)[\varvec{X}_z\varvec{{\widetilde{B}}}\varvec{A}^{\tau }\varvec{W}(z)\varvec{A}\varvec{{\widetilde{B}}}\varvec{X}_z]^{-1}[\varvec{Xz}\varvec{{\widetilde{B}}}\varvec{A}^{\tau }\varvec{W}(z)\varvec{A}\varvec{{\widetilde{B}}}{\text {Vec}}(\varvec{Y})]. \end{aligned} \end{aligned}$$

Next, we decompose \(\widetilde{\varvec{m}}(z)-\widetilde{\varvec{m}}^{\star }(z)\) as follows

$$\begin{aligned} \begin{aligned} \widetilde{\varvec{m}}(z)-\widetilde{\varvec{m}}^{\star }(z)&=(\varvec{I}_p,\varvec{O}_p)\left\{ [\varvec{Xz}\varvec{BA}^{\tau }\varvec{W}(z)\varvec{AB}\varvec{Xz}]^{-1}[\varvec{Xz}BA^{\tau }\varvec{W}(z)\varvec{AB}{\text {Vec}}(\varvec{Y})]\right. \\&\qquad \left. -[\varvec{Xz}\varvec{{\widetilde{B}}A}^{\tau }\varvec{W}(z)\varvec{A{\widetilde{B}}}\varvec{Xz}]^{-1}[\varvec{Xz}\varvec{{\widetilde{B}}A}^{\tau }\varvec{W}(z)\varvec{A{\widetilde{B}}}{\text {Vec}}(\varvec{Y})]\right\} \\&=(\varvec{I}_p,\varvec{O}_p)\left\{ [\varvec{Xz}\varvec{BA}^{\tau }\varvec{W}(z)\varvec{AB}\varvec{Xz}]^{-1}[\varvec{Xz}\varvec{BA}^{\tau }\varvec{W}(z)\varvec{AB}{\text {Vec}}(\varvec{Y})]\right. \\&\qquad -[\varvec{Xz}\varvec{BA}^{\tau }\varvec{W}(z)\varvec{AB}\varvec{Xz}]^{-1}[\varvec{Xz}\varvec{{\widetilde{B}}A}^{\tau }\varvec{W}(z)\varvec{A{\widetilde{B}}}{\text {Vec}}(\varvec{Y})]\\&\qquad +[\varvec{Xz}BA^{\tau }\varvec{W}(z)\varvec{AB}\varvec{Xz}]^{-1}[\varvec{Xz}\varvec{{\widetilde{B}}A}^{\tau }\varvec{W}(z)\varvec{A{\widetilde{B}}}{\text {Vec}}(\varvec{Y})]\\&\qquad \left. -[\varvec{Xz}\varvec{{\widetilde{B}}A}^{\tau }\varvec{W}(z)\varvec{A{\widetilde{B}}}\varvec{Xz}]^{-1}[\varvec{Xz}\varvec{{\widetilde{B}}A}^{\tau }\varvec{W}(z)\varvec{A{\widetilde{B}}}{\text {Vec}}(\varvec{Y})]\right\} \\&=(\varvec{I}_p,\varvec{O}_p)\left\{ [\varvec{Xz}\varvec{BA}^{\tau }\varvec{W}(z)\varvec{AB}\varvec{Xz}]^{-1}\right. \\&\qquad \times [\varvec{Xz}(\varvec{BA}^{\tau }\varvec{W}(z)\varvec{AB}-\varvec{{\widetilde{B}}A}^{\tau }\varvec{W}(z)\varvec{A{\widetilde{B}}}){\text {Vec}}(\varvec{Y})]\\&\qquad +([\varvec{Xz}BA^{\tau }\varvec{W}(z)\varvec{AB}\varvec{Xz}]^{-1}-[\varvec{Xz}\varvec{BA}^{\tau }\varvec{W}(z)\varvec{AB}\varvec{Xz}]^{-1})\\&\qquad \times \left. [\varvec{Xz}\varvec{{\widetilde{B}}A}^{\tau }\varvec{W}(z)\varvec{A{\widetilde{B}}}{\text {Vec}}(\varvec{Y})]\right\} . \end{aligned} \end{aligned}$$

The bound for the every part in the last step is

$$\begin{aligned} \begin{aligned}&[\varvec{Xz}(BA^{\tau }\varvec{W}(z)AB-{\widetilde{B}}A^{\tau }\varvec{W}(z)A{\widetilde{B}}){\text {Vec}}(\varvec{Y})]\\&\quad =O_p(\Vert B-{\widetilde{B}}\Vert \Vert B\Vert \Vert A^{\tau }\varvec{W}(z)A\Vert ),\\&\quad \quad \times [\varvec{Xz}BA^{\tau }\varvec{W}(z)AB\varvec{Xz}]\\&\quad =O_p(\Vert B\Vert ^2\Vert A^{\tau }\varvec{W}(z)A\Vert ),\\&\quad \quad \times [\varvec{Xz}BA^{\tau }\varvec{W}(z)AB{\text {Vec}}(\varvec{Y})]\\&\quad =O_p(\Vert B\Vert ^2\Vert A^{\tau }\varvec{W}(z)A\Vert ),\\&\quad \quad \times [\varvec{Xz}BA^{\tau }\varvec{W}(z)AB\varvec{Xz}]^{-1}-[\varvec{Xz}BA^{\tau }\varvec{W}(z)AB\varvec{Xz}]^{-1}\\&\quad =[\varvec{Xz}BA^{\tau }\varvec{W}(z)AB\varvec{Xz}]^{-1}([\varvec{Xz}{\widetilde{B}}A^{\tau }\varvec{W}(z)A{\widetilde{B}}\varvec{Xz}]\\&\quad \quad -[\varvec{Xz}BA^{\tau }\varvec{W}(z)AB\varvec{Xz}])[\varvec{Xz}{\widetilde{B}}A^{\tau }\varvec{W}(z)A{\widetilde{B}}\varvec{Xz}]^{-1}. \end{aligned} \end{aligned}$$

Hence, \(\widetilde{\varvec{m}}(z)-\widetilde{\varvec{m}}^{\star }(z)\) is bounded by

$$\begin{aligned} \widetilde{\varvec{m}}(z)-\widetilde{\varvec{m}}^{\star }(z)=O_p \left( \frac{\Vert \varvec{B}-\varvec{{\widetilde{B}}}\Vert }{\Vert \varvec{B}\Vert }\right) . \end{aligned}$$

According to the mean value theorem, \(\Vert \varvec{B}-\varvec{{\widetilde{B}}}\Vert \) is bounded by \(|l\Vert |\varvec{B}^{-2}-\varvec{{\widetilde{B}}}^{-2}\Vert \), and l lies in \([-\frac{1}{2}B^3,-\frac{1}{2}\varvec{{\widetilde{B}}}^3]\), so

$$\begin{aligned} \Vert \varvec{B}^{-2}-\varvec{{\widetilde{B}}}^{-2}\Vert =O_p(NTR_{T,a,h}). \end{aligned}$$

Thus,

$$\begin{aligned} \Vert \varvec{B}-\varvec{{\widetilde{B}}}\Vert =O_p(NTR_{T,a,h}). \end{aligned}$$

Combined with

$$\begin{aligned} \Vert \varvec{B}\Vert =T\Vert \varvec{\varSigma }^{-\frac{1}{2}}\Vert , \end{aligned}$$

we have that

$$\begin{aligned} \widetilde{\varvec{m}}(z)-\widetilde{\varvec{m}}^{\star }(z)=O_p \left( \frac{\Vert \varvec{B}-\varvec{{\widetilde{B}}}\Vert }{\Vert \varvec{B}\Vert } \right) =O_p(\Vert \varvec{\varSigma }^{-\frac{1}{2}}\Vert ^{-1}NR_{T,a,h}). \end{aligned}$$

Because \(N(Th)^{-1}=o(N^{-\frac{1}{2}}(Th)^{-\frac{1}{2}})=o((Th)^{-\frac{1}{2}})\), which is implied by \(N^3/(Th)\rightarrow 0\), Assumption 6-(b) implies that \(NR_{T,a,h}=o(\frac{1}{\sqrt{Th}}+h^2)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Pei, Y. & Xu, Q. Estimation for varying coefficient panel data model with cross-sectional dependence. Metrika 83, 377–410 (2020). https://doi.org/10.1007/s00184-019-00739-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-019-00739-0

Keywords

Mathematics Subject Classification

Navigation