Skip to main content
Log in

A general guide in Bayesian and robust Bayesian estimation using Dirichlet processes

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this paper, we investigate Bayesian and robust Bayesian estimation of a wide range of parameters of interest in the context of Bayesian nonparametrics under a broad class of loss functions. Dealing with uncertainty regarding the prior, we consider the Dirichlet and the Dirichlet invariant priors, and provide explicit form of the resulting Bayes and robust Bayes estimators. Tractability of the results is supported by numerous examples of different well-known loss functions. The practical utility of the proposed Bayes and robust Bayes estimators are examined for a real data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. It is important to realize that in Lemma A, the posterior distribution of \(\theta _P\) given \({\varvec{X}}\) has two related parameters, i.e., aH and \(a(1-H)\). There was no need to use the Taylor’s expansions if the two parameters were unrelated. For example, if \(P|{\varvec{X}}\) was assumed to follow \(Beta(a_1,a_2)\)-distribution, then one could derive \(E[\ln \theta _P|{\varvec{X}}]\) as follows

    $$\begin{aligned} E[\ln \theta _P|{\varvec{X}}]= & {} \int _0^1\frac{\ln v}{B(a_1,a_2)} v^{a_1-1}(1-v)^{a_2-1}dv\\= & {} \frac{1}{B(a_1,a_2)} \int _0^1 \frac{\partial }{\partial a_1} v^{a_1-1}(1-v)^{a_2-1}dv\\= & {} \frac{\partial }{\partial a_1} \ln B(a_1,a_2)\\= & {} \frac{\partial }{\partial a_1}\ln \varGamma (a_1) -\frac{\partial }{\partial a_1}\ln \varGamma (a_1+a_2)\\= & {} \psi (a_1)-\psi (a_1+a_2), \end{aligned}$$

    where \(\psi (\cdot )\) is the digamma function, i.e., \(\psi (u)=\frac{\partial }{\partial u}\ln \varGamma (u)\). In the same way, one could prove that \(E[\ln (1-\theta _P)|{\varvec{X}}]=\psi (a_2) -\psi (a_1+a_2)\). However, these simple and well-known relations can not be used in the derivation of \(E[\ln \theta _P]\) and \(E[\ln (1-\theta _P)]\) in Lemma A due to the fact that \(a_2=a(1-H{(S)})=a-a_1\) is a function of \(a_1=aH{(S)}\).

References

  • Al-Labadi L, Evans M (2016) Prior based model checking. arXiv preprint. arXiv:1606.08106

  • Al-Labadi L, Evans M (2017) Optimal robustness results for relative belief inferences and the relationship to prior-data conflict. Bayesian Anal 12(3):705–728

    MathSciNet  MATH  Google Scholar 

  • Al-Labadi L, Zarepour M (2013) On asymptotic properties and almost sure approximation of the normalized inverse-Gaussian process. Bayesian Anal 8(3):553–568

    MathSciNet  MATH  Google Scholar 

  • Antoniak CE (1974) Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann Stat 2(6):1152–1174

    MathSciNet  MATH  Google Scholar 

  • Arias-Nicolás JP, Martín J, Ruggeri F, Suárez-Llorens A (2009) Optimal actions in problems with convex loss functions. Int J Approx Reason 50(2):303–314

    MathSciNet  MATH  Google Scholar 

  • Banerjee A, Merugu S, Dhillon IS, Ghosh J (2005) Clustering with Bregman divergences. J Mach Learn Res 6:1705–1749

    MathSciNet  MATH  Google Scholar 

  • Basu S (2000) Bayesian robustness and Bayesian nonparametrics. In: Insua DR, Ruggeri F (eds) Robust Bayesian analysis. Springer, New York, pp 223–240

    MATH  Google Scholar 

  • Benavoli A, Mangili F, Ruggeri F, Zaffalon M (2015) Imprecise Dirichlet process with application to the hypothesis test on the probability that \(X\le Y\). J Stat Theory Pract 9(3):658–684

    MathSciNet  MATH  Google Scholar 

  • Berger JO (1990) Robust Bayesian analysis: sensitivity to the prior. J Stat Plan Inference 25(3):303–328

    MathSciNet  MATH  Google Scholar 

  • Berger JO (2013) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Berger JO, Moreno E, Pericchi LR, Bayarri MJ, Bernardo JM, Cano JA, De la Horra J, Martín J, Ríos-Insúa D, Betrò B et al (1994) An overview of robust Bayesian analysis. Test 3(1):5–124

    MathSciNet  Google Scholar 

  • Bose S (2017) Robustness in Bayesian nonparametrics. Int J Approx Reason 82:161–169

    MathSciNet  MATH  Google Scholar 

  • Bregman LM (1967) The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput Math Math Phys 7(3):200–217

    MathSciNet  MATH  Google Scholar 

  • Brown L (1968) Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. Ann Math Stat 39(1):29–48

    MATH  Google Scholar 

  • Cagno E, Caron F, Mancini M, Ruggeri F (2000) Using AHP in determining the prior distributions on gas pipeline failures in a robust Bayesian approach. Reliab Eng Syst Saf 67(3):275–284

    Google Scholar 

  • Calabria R, Pulcini G (1994) An engineering approach to Bayes estimation for the Weibull distribution. Microelectron Reliab 34(5):789–802

    MATH  Google Scholar 

  • Carlton MA (1999) Applications of the two-parameter Poisson–Dirichlet distribution. Ph.D. thesis, Department of Statistics, University of California, Los Angeles

  • Dalal SR (1979) Dirichlet invariant processes and applications to nonparametric estimation of symmetric distribution functions. Stoch Process Their Appl 9(1):99–107

    MathSciNet  MATH  Google Scholar 

  • Ferguson TS (1973) A Bayesian analysis of some nonparametric problems. Ann Stat 1(2):209–230

    MathSciNet  MATH  Google Scholar 

  • Ferguson TS, Klass MJ (1972) A representation of independent increment processes without Gaussian components. Ann Math Stat 43(5):1634–1643

    MathSciNet  MATH  Google Scholar 

  • Févotte C, Bertin N, Durrieu JL (2009) Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis. Neural Comput 21(3):793–830

    MATH  Google Scholar 

  • Golparver L, Karimnezhad A, Parsian A (2013) Optimal rules and robust Bayes estimation of a gamma scale parameter. Metrika 76(5):595–622

    MathSciNet  MATH  Google Scholar 

  • Gupta AK, Nadarajah S (2004) Mathematical properties of the Beta distribution. In: Gupta AK, Nadarajah S (eds) Handbook of beta distribution and its applications. Marcel Dekker Inc., New York, pp 33–53

    MATH  Google Scholar 

  • Hjort NL (1990) Nonparametric Bayes estimators based on beta processes in models for life history data. Ann Stat 18(3):1259–1294

    MathSciNet  MATH  Google Scholar 

  • Hosseini R, Zarepour M (2018) A note on Bayesian nonparametric inference for spherically symmetric distribution. arXiv preprint. arXiv:1807.11066v2

  • Ishwaran H, James LF (2001) Gibbs sampling methods for stick-breaking priors. J Am Stat Assoc 96(453):161–173

    MathSciNet  MATH  Google Scholar 

  • Ishwaran H, Zarepour M (2000) Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models. Biometrika 87(2):371–390

    MathSciNet  MATH  Google Scholar 

  • Jagers P (1974) Aspects of random measures and point processes. Adv Probab Relat Top 3:179–239

    MathSciNet  MATH  Google Scholar 

  • James LF, Lijoi A, Prünster I (2006) Conjugacy as a distinctive feature of the Dirichlet process. Scand J Stat 33(1):105–120

    MathSciNet  MATH  Google Scholar 

  • James W, Stein C (1992) Estimation with quadratic loss. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics. Springer Series in Statistics (Perspectives in Statistics). Springer, New York, pp 443–460

    Google Scholar 

  • Jang GH, Lee J, Lee S (2010) Posterior consistency of species sampling priors. Stat Sinica 20:581–593

    MathSciNet  MATH  Google Scholar 

  • Kalbfleisch JD (1978) Non-parametric Bayesian analysis of survival time data. J R Stat Soc Ser B (Methodol) 40(2):214–221

    MathSciNet  MATH  Google Scholar 

  • Karimnezhad A, Parsian A (2014) Robust Bayesian methodology with applications in credibility premium derivation and future claim size prediction. AStA Adv Stat Anal 98(3):287–303

    MathSciNet  MATH  Google Scholar 

  • Karimnezhad A, Parsian A (2018) Most stable sample size determination in clinical trials. Stat Methods Appl. https://doi.org/10.1007/s10260-017-0419-6

    Article  MathSciNet  MATH  Google Scholar 

  • Karimnezhad A, Parsian A (2019) Bayesian and robust Bayesian analysis in a general setting. Commun Stat Theory Methods 48(15):3899–3920

    MathSciNet  Google Scholar 

  • Karimnezhad A, Lucas PJ, Parsian A (2017) Constrained parameter estimation with uncertain priors for Bayesian networks. Electron J Stat 11(2):4000–4032

    MathSciNet  MATH  Google Scholar 

  • Kiapour A, Nematollahi N (2011) Robust Bayesian prediction and estimation under a squared log error loss function. Stat Probab Lett 81(11):1717–1724

    MathSciNet  MATH  Google Scholar 

  • Lehmann EL, Casella G (1998) Theory of point estimation. Springer, New York

    MATH  Google Scholar 

  • Lo AY (1984) On a class of Bayesian nonparametric estimates: I. Density estimates. Ann Stat 12(1):351–357

    MathSciNet  MATH  Google Scholar 

  • Lijoi A, Mena RH, Prünster I (2005) Hierarchical mixture modeling with normalized inverse-Gaussian priors. J Am Stat Assoc 100(472):1278–1291

    MathSciNet  MATH  Google Scholar 

  • Makov UE (1995) Loss robustness via Fisher-weighted squared-error loss function. Insur Math Econ 16(1):1–6

    MathSciNet  MATH  Google Scholar 

  • Masi I, Tran AT, Hassner T, Leksut JT, Medioni G (2016) Do we really need to collect millions of faces for effective face recognition? In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision, ECCV. Lecture Notes in Computer Science, Col 9909. Springer, Cham

    Google Scholar 

  • Müller P, Quintana FA, Jara A, Hanson T (2016) Bayesian nonparametric data analysis. Springer, New York

    MATH  Google Scholar 

  • Norstrom JG (1996) The use of precautionary loss functions in risk analysis. IEEE Trans Reliab 45(3):400–403

    Google Scholar 

  • Parsian A, Kirmani S (2002) Estimation under LINEX loss function. In: Ullah A, Wan ATK, Chaturvedi A (eds) Handbook of applied econometrics and statistical inference. Marcel Dekker Inc., New York, pp 53–75

    Google Scholar 

  • Phadia EG (1973) Minimax estimation of a cumulative distribution function. Ann Stat 1(6):1149–1157

    MathSciNet  MATH  Google Scholar 

  • Phadia EG (2016) Prior processes and their applications, 2nd edn. Springer, Cham

    MATH  Google Scholar 

  • Pitman J (1996) Blackwell-macqueen urn scheme. Stat Probab Game Theory Pap Honor David Blackwell 30:245

    MathSciNet  Google Scholar 

  • Pitman J, Yor M (1997) The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator. Ann Probab 2:855–900

    MathSciNet  MATH  Google Scholar 

  • Regazzini E, Lijoi A, Prünster I (2003) Distributional results for means of normalized random measures with independent increments. Ann Stat 31(2):560–585

    MathSciNet  MATH  Google Scholar 

  • Ruggeri F (2010) Nonparametric Bayesian robustness. Chil J Stat 2:51–68

    MathSciNet  MATH  Google Scholar 

  • Ruggeri F (2014) On some optimal Bayesian nonparametric rules for estimating distribution functions. Econ Rev 33(1–4):289–304

    MathSciNet  Google Scholar 

  • Ríos Insua D, Ruggeri F, Wiper M (2012) Bayesian analysis of stochastic process models. Wiley, Chichester

    MATH  Google Scholar 

  • Sethuraman J (1994) A constructive definition of Dirichlet priors. Stat Sinica 4:639–650

    MathSciNet  MATH  Google Scholar 

  • Soliman AA (2005) Estimation of parameters of life from progressively censored data using Burr-xii model. IEEE Trans Reliab 54(1):34–42

    Google Scholar 

  • Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation. J Am Stat Assoc 82:528–550

    MathSciNet  MATH  Google Scholar 

  • Teh YW (2006) A hierarchical Bayesian language model based on Pitman–Yor processes. In: Proceedings of the 21st international conference on computational linguistics and the 44th annual meeting of the association for computational linguistics. Association for Computational Linguistics pp 985–992

  • Thibaux R, Jordan MI (2007) Hierarchical beta processes and the Indian buffet process. In artificial intelligence and statistics. In: Meila M, Shen X (eds.) Proceedings of the 10th conference on artificial intelligence and statistics. Society for Artificial Intelligence and Statistics, pp 564–571

  • van Dyk DA, Meng XL (2001) The art of data augmentation. J Comput Graph Stat 10(1):1–50

    MathSciNet  Google Scholar 

  • Varian HR (1975) A Bayesian approach to real estate assessment. Studies in Bayesian Econometric and Statistics in Honor of Leonard J. Savage 195–208

  • Walker S, Muliere P (1997) Beta-Stacy processes and a generalization of the Pólya-urn scheme. Ann Stat 25(4):1762–1780

    MATH  Google Scholar 

  • Zarepour M, Al-Labadi L (2012) On a rapid simulation of the Dirichlet process. Stat Probab Lett 82(5):916–924

    MathSciNet  MATH  Google Scholar 

  • Zellner A (1986) Bayesian estimation and prediction using asymmetric loss functions. J Am Stat Assoc 81(394):446–451

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are cordially grateful to the Editor in Chief and two anonymous reviewers for raising several helpful comments and suggestions which led to a substantial improvement in the quality of our work. Research of the second author was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN-2018-04008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Karimnezhad.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma A

Let \({\varvec{X}}=({\varvec{X}}_{1},\ldots ,{\varvec{X}}_{m})^{T}\) be a sample of size m of random vectors from unknown distribution \(P\in {\mathcal {F}}\), where \({\mathcal {F}}\) is a general class of beliefs on \((\mathbb {R},{\mathcal {B}})\). Suppose \(\theta _P=P(X_1\in S)\), where S is an arbitrary subset of the real line. Assuming that \(P\sim DP(a,H)\ [\)or \(P\sim DIP(a,H)]\), suppose that \(P|{\varvec{X}}\sim DP(\tilde{a},\tilde{H})\ [\)or \(P|{\varvec{X}}\sim DIP(\tilde{a},\tilde{H})]\). Then, for some known \(\alpha \), \(\beta \) and \(\gamma \),

  1. (i)
    $$\begin{aligned} E[\theta _P^{\alpha }(1-\theta _P)^{\beta }|{\varvec{X}}] =\frac{B\left( \tilde{a}\tilde{H}{(S)}+\alpha ,\tilde{a}(1-\tilde{H}{(S)}) +\beta \right) }{B\left( \tilde{a}\tilde{H}{(S)}, \tilde{a}(1-\tilde{H}{(S)})\right) }, \end{aligned}$$
  2. (ii)
    $$\begin{aligned} E[e^{\gamma \theta _P}|{\varvec{X}}]= 1+\sum _{l=1}^{\infty } \frac{c^l}{l!} \prod _{j=0}^{l-1} \frac{\tilde{a}\tilde{H}{(S)}+j}{\tilde{a}+j}, \end{aligned}$$
  3. (iii)
    $$\begin{aligned} E[\ln \theta _P|{\varvec{X}}]=-\sum _{l=1}^{\infty }\frac{1}{l} \frac{B\left( \tilde{a}\tilde{H}{(S)},\tilde{a}(1-\tilde{H}{(S)})+l\right) }{B\left( \tilde{a}\tilde{H}{(S)},\tilde{a}(1-\tilde{H}{(S)})\right) }, \end{aligned}$$
  4. (iv)
    $$\begin{aligned} E[\ln (1-\theta _P)|{\varvec{X}}]=-\sum _{l=1}^{\infty }\frac{1}{l} \frac{B\left( \tilde{a}\tilde{H}{(S)}+l,\tilde{a}(1-\tilde{H}{(S)})\right) }{B\left( \tilde{a}\tilde{H}{(S)},\tilde{a}(1-\tilde{a})\right) }, \end{aligned}$$

where \(B(\alpha ,\beta )=\frac{\varGamma (\alpha )\varGamma (\beta )}{\varGamma (\alpha +\beta )}\), and \(\varGamma (u)=\int _0^{\infty } v^{u-1} e^{-v}\,dv\) is the gamma function.

Proof

In Definition 1 take \(k=2\) and consider \({\mathcal {X}}\) as a union of two disjoint sets. This yields that \(P\sim Beta(aH{(S)},a(1-H{(S)}))\). Part (i) is simply verified using simple algebraic manipulation. Part (ii) is in fact obtained by using the moment generating function of the Beta distribution, see Gupta and Nadarajah (2004). Part (iii)Footnote 1 is verified using the Taylor’s expansion of \(\ln \theta _P\), i.e., \(\ln \theta _P=-\sum _{l=1}^{\infty }\frac{1}{l}(1-\theta _P)^l\), along with applying part (i) of the lemma with the choices \(\alpha =0\) and \(\beta =l\). Part (iv) is verified using the Taylor’s expansion of \(\ln (1-\theta _P)\), i.e., \(\ln (1-\theta _P)=-\sum _{l=1}^{\infty } \frac{1}{l}{\theta _P^l}\), along with applying part (i) of the lemma with the choices \(\alpha =l\) and \(\beta =0\).

Proof of Theorem 3

  1. (i)

    The function \(\eta _j^{\mathcal {F}}(a,\theta _0)\) is increasing in \(\theta _0\) and thus, \(\eta _j^{\mathcal {F}} (a,\theta _0)\) attains its infimum at \(\theta _0=\underline{\theta }_0\). Similarly, \( \eta _j^{\mathcal {F}}(a,\theta _0)\) attains its supremum at \(\theta _0=\overline{\theta }_0\).

  2. (ii)

    The function \( \eta _j^{\mathcal {F}}(a,\theta _0)\) is increasing in a, provided that \(\theta _0>\frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j}\), and is decreasing in a, provided that \(\theta _0<\frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j}\). Otherwise, \(\eta _j^{\mathcal {F}}(a,\theta _0)\) is constant. Thus, if \(\theta _0>\frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j}\), \(\underline{\eta }_j^{\mathcal {F}}= \eta _j^{\mathcal {F}}(a_1,\theta _0)\) and if \(\theta _0<\frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j}\), \(\overline{\eta }_j^{\mathcal {F}}= \eta _j^{\mathcal {F}}(a_2,\theta _0)\). The same discussion leads to the determination of \(\overline{\eta }_j^{\mathcal {F}}\).

  3. (iii)

    First, suppose that \( \underline{\theta }_0 \ge \frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j}\). The fact that \(\theta _0\in [\underline{\theta }_0,\overline{\theta }_0]\) yields that \(\theta _0 \ge \underline{\theta }_0 \ge \frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j}\) which results in \(\eta _j^{\mathcal {F}}(a,\theta _0)\ge \eta _j^{\mathcal {F}}(a_1,\theta _0)\), as well as \(\theta _0-\frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j} \ge \underline{\theta }_0 -\frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j}\ge 0\). The latter inequality implies that \(\eta _j^{\mathcal {F}}(a_1,\theta _0)\ge \eta _j^{\mathcal {F}}(a_1,\underline{\theta }_0)\). Now, using the fact that \( \eta _j^{\mathcal {F}}(a,\theta _0)\ge \eta _j^{\mathcal {F}}(a_1,\theta _0)\), it is concluded that for every a and H, \( \eta _j^{\mathcal {F}}(a,\theta _0)\ge \eta _j^{\mathcal {F}}(a_1,\underline{\theta }_0)\) or equivalently \(\underline{\eta }_j^{\mathcal {F}}(a,\theta _0) =\eta _j^{\mathcal {F}}(a_1,\underline{\theta }_0)\). The same discussion leads us to \(\overline{\eta }_j^{\mathcal {F}} =\eta _j^{\mathcal {F}}(a_2,\overline{\theta }_0)\).       If \(\overline{\theta }_0 \le \frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j}\), the fact that \(\theta _0\in [\underline{\theta }_0,\overline{\theta }_0]\) yields that \(\underline{\theta }_0 \le \theta _0 \le \overline{\theta }_0 \le \frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j}\) which results in \( \eta _j^{\mathcal {F}}(a,\theta _0)\le \eta _j^{\mathcal {F}}(a_2,\theta _0)\), as well as \(\underline{\theta }_0-\frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j} \le \theta _0-\frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j} \le \overline{\theta }_0 -\frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j} \le 0\). The latter inequality implies that \(\eta _j^{\mathcal {F}}(a_2,\theta _0)\le \eta _j^{\mathcal {F}}(a_2,\underline{\theta }_0)\). The fact that \(\eta _j^{\mathcal {F}}(a,\theta _0)\le \eta _j^{\mathcal {F}}(a_2,\theta _0)\) yields that for every a and \(\theta _0\), \( \eta _j^{\mathcal {F}}(a,\theta _0)\le \eta _j^{\mathcal {F}}(a_2,\underline{\theta }_0)\) or equivalently \(\underline{\eta }_j^{\mathcal {F}}=\eta _j^{\mathcal {F}}(a_2, \underline{\theta }_0)\). The same discussion leads us to \(\overline{\eta }_j^{\mathcal {F}}= \eta _j^{\mathcal {F}}(a_1,\overline{\theta }_0)\).       Now, if \(\underline{\theta }_0< \frac{j+{v^{\mathcal {F}} (Z,{\varvec{X}})}}{m+j} < \overline{\theta }_0\), the fact that \(\theta _0\in [\underline{\theta }_0,\overline{\theta }_0]\) yields to the two possibilities \(\underline{\theta }_0 \le \theta _0<\frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j} < \overline{\theta }_0\) and \( \underline{\theta }_0<\frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j} < \theta _0 \le \overline{\theta }_0\). In both cases, \(\underline{\theta }_0- \frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j} \le \theta _0- \frac{j+{v^{\mathcal {F}}(Z,{\varvec{X}})}}{m+j} \) which yields that \( \eta _j^{\mathcal {F}}(a,\theta _0)\ge \eta _j^{\mathcal {F}}(a,\underline{\theta }_0)\). On the other hand \(\eta _j^{\mathcal {F}}(a,\underline{\theta }_0)\ge \eta _j^{\mathcal {F}}(a_2,\underline{\theta }_0)\). Combining these facts results that for every a and H, \(\eta _j^{\mathcal {F}} (a,\theta _0)\ge \eta _j^{\mathcal {F}}(a_2,\underline{\theta }_0)\) or equivalently \(\underline{\eta }_j^{\mathcal {F}}=\eta _j^{\mathcal {F}} (a_2,\underline{\theta }_0)\). The same discussion proves that \(\overline{\eta }_j^{\mathcal {F}}= \eta _j^{\mathcal {F}}(a_2, \overline{\theta }_0)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimnezhad, A., Zarepour, M. A general guide in Bayesian and robust Bayesian estimation using Dirichlet processes. Metrika 83, 321–346 (2020). https://doi.org/10.1007/s00184-019-00737-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-019-00737-2

Keywords

Navigation