Skip to main content
Log in

Composite quantile regression estimation of linear error-in-variable models using instrumental variables

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this paper, we develop a composite quantile regression estimator of linear error-in-variable models based on instrumental variables. The proposed estimator is consistent and asymptotically normal under fairly general assumptions. It neither requires the measurement errors and the regression errors to have the same variance nor to belong to the same location-scale symmetric distribution. The simulation results show that the proposed method generates unbiased and efficient estimates for different types of the distributions of the regression errors in finite samples. An application to real data collected from the survey of identical twins to study the economic returns to schooling is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abarin T, Wang L (2012) Instrumental variable approach to covariate measurement error in generalized linear models. Ann Inst Statist Math 64(3):475–493

    Article  MathSciNet  Google Scholar 

  • Angrist JD, Krueger A (1991) Does compulsory school attendance affect schooling and earnings? Q J Econ 106:979–1014

    Article  Google Scholar 

  • Ashenfelter O, Krueger A (1994) Estimates of the economic return to schooling from a new sample of twins. Am Econ Rev 84(5):1157–1173

    Google Scholar 

  • Cai Z, Das M, Xiong H, Wu X (2006) Functional coeffcient instrumental variables models. J Econ 133:207–241

    Article  Google Scholar 

  • Cui H (1997) Asymptotic normality of M-estimates in the EV model. Syst Sci Math Sci 10(3):225–236

  • Cui H, Li R (1998) On parameter estimation for semi-linear errors-in-variables models. J Multivar Anal 64:1–24

  • Feng S, Xue L (2014) Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition. Ann Inst Stat Math 66(1):121–140

    Article  MathSciNet  Google Scholar 

  • Fuller WA (1987) Measurement Error Models. Wiley, New York

  • Guan J, Wang L (2017) Instrumental variable estimation in linear quantile regression models with measurement error. Chin J Appl Probab Stat 33(5):475–486

    MathSciNet  MATH  Google Scholar 

  • Guo J, Tian M, Zhu K (2012) New efficient and robust estimation in varying-coefficient models with heteroscedasticity. Stat Sin 22:1075–1101

  • He X, Liang H (2000) Quantile regression estimates for a class of linear and partially linear error-in-variable models. Stat Sin 10:129–140

    MathSciNet  MATH  Google Scholar 

  • Huang Y, Wang C (2001) Consistent functional methods for logistic regression with errors in covariates. J Am Stat Assoc 96:1469–1482

    Article  MathSciNet  Google Scholar 

  • Jiang R (2015) Composite quantile regression for linear errors-in-variables models. Hacet J Math Stat 44:707–713

    MathSciNet  MATH  Google Scholar 

  • Jiang R, Yang X, Qian W (2012) Random weighting M-estimation for linear errors-in-variables models. J Korean Stat Soc 41:505–514

    Article  MathSciNet  Google Scholar 

  • Jiang R, Zhou Z, Qian W, Chen Y (2013) Two step composite quantile regression for single-index models. Comput Stat Data Anal 64:180–191

    Article  MathSciNet  Google Scholar 

  • Kai B, Li R, Zou H (2010) Local composite quantile regression smoothing:an efficient and safe alternative to local polynomial regression. J R Stat Soc B (Stat Methodol) 72:49–69

    Article  MathSciNet  Google Scholar 

  • Kai B, Li R, Zou H (2011) New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. Ann Stat 39:305–332

    Article  MathSciNet  Google Scholar 

  • Koenker R, Bassett G Jr (1978) Regression quantiles. Econometrica 46(1):33–50

    Article  MathSciNet  Google Scholar 

  • Knight K (1998) Limiting distributions for L1 regression estimators under general conditions. Ann Stat 26:755–770

    Article  Google Scholar 

  • Liang H, Wang N (1997) Large sample theory in a semiparametric partially linear errors-in-variable model. Stat Sin 15:99–117

    Google Scholar 

  • Ma Y, Tsiatis AA (2006) Closed form semiparametric estimators for measurement error models. Stat Sin 16:183–193

    MathSciNet  MATH  Google Scholar 

  • Rouse CE (1999) Further estimates of the economic return to schooling from a new sample of twins. Econ Educ Rev 18:149–157

    Article  Google Scholar 

  • Schennach SM (2007) Instrumental variable estimation of nonlinear errors-in-variables models. Econometrica 75(1):201–239

    Article  MathSciNet  Google Scholar 

  • Stefanski LA, Carroll RJ (1987) Conditional scores and optimal scores for generalized linear measurement-error models. Biometrika 74:703–716

    MathSciNet  MATH  Google Scholar 

  • Tang L, Zhou Z, Wu C (2012a) Weighting composite quantile estimate and variable selection method for censored regression model. Stat Probab Lett 3:653–663

    Article  Google Scholar 

  • Tang L, Zhou Z, Wu C (2012b) Efficient estimation and variable selection for infinite variance autoregressive models. J Appl Math Comput 40:399–413

    Article  MathSciNet  Google Scholar 

  • Wei Y, Carroll RJ (2009) Quantile regression with measurement error. J Am Stat Assoc 104(487):1129–1143

    Article  MathSciNet  Google Scholar 

  • Zhang W, Li G, Xue L (2011) Profile inference on partially linear varying-coefficient errors-in-variables models under restricted condition. Comput Stat Data Anal 55(11):3027–3040

    Article  MathSciNet  Google Scholar 

  • Zhao P, Xue L (2010) Variable selection for semiparametric varying coefficient partially linear errors-in-variables models. J Multivar Anal 101(8):1872–1883

    Article  MathSciNet  Google Scholar 

  • Zou H, Yuan M (2008) Composite quantile regression and the oracle model selection theory. Ann Stat 36(3):1108–1126

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the Chongqing Research Program of Basic Theory and Advanced Technology (cstc2017jcyjAX0067, cstc2018jcyjAX0823), Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1600610, KJ1706163), the Program for University Innovation Team of Chongqing (CXTDX201601026), Fifth batch of excellent talent support program for Chongqing Colleges and University and Chongqing key laboratory of social economy and applied statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Yang.

Ethics declarations

Conflict of interest statement

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Composite quantile regression estimation of linear error-in-variable models using instrumental variables”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

Let \(Q_n=\sqrt{n}(\hat{\beta }^\mathrm{CQR}-\beta )\) and \(R_{nk}=\sqrt{n}(\hat{b}_{\tau _k}-b_{\tau _k})\). Then \((R_{n1}, \ldots , R_{nK}, Q_n)\) is the minimizer of the following criterion

$$\begin{aligned} \mathcal {L}_n=\sum _{k=1}^{K}\sum _{i=1}^{n}\left[ \rho _{\tau _k}\left( \epsilon _i^*-b_{\tau _k}-r_i- \frac{R_{n,k}+(\Gamma Z_i)^TQ_n}{\sqrt{n}}\right) -\rho _{\tau _k}\left( \epsilon _i^*-b_{\tau _k}-r_i\right) \right] . \end{aligned}$$

where \(\epsilon _i^*=Y_i-(\Gamma Z_i)^T\beta =\epsilon _i+\delta _i^T\beta \) and \(r_i=(\hat{\Gamma }Z_i-\Gamma Z_i)^T\beta \).

By applying the identity in Knight (1998), we have

$$\begin{aligned} \mathcal {L}_n =\sum _{k=1}^{K}\sum _{i=1}^{n}\frac{R_{nk}+(\Gamma Z_i)^TQ_n}{\sqrt{n}}\eta _{ik}+B_n, \end{aligned}$$

where \(B_n=\sum \nolimits _{k=1}^{K}\sum \nolimits _{i=1}^{n}\int _{r_i}^{r_i+\left\{ R_{n,k}+(\Gamma Z_i)^TQ_n\right\} /\sqrt{n}}\left[ I(\epsilon _i^*\le b_{\tau _k}+t)-I(\epsilon _i^*\le b_{\tau _k})\right] dt\).

First, we consider \(B_n\).

$$\begin{aligned} \text {E}(B_n|Z_i)= & {} \sum \limits _{k=1}^K \sum _{i=1}^{n}\int _{r_i}^{r_i+\left\{ R_{nk}+(\Gamma Z_i)^TQ_n\right\} /\sqrt{n}}t f(b_{\tau _k})\left\{ 1+o(1)\right\} dt \\= & {} \frac{1}{2}f(b_{\tau _k})R_{nk}^2+\frac{1}{2}Q_n^T \left\{ \frac{1}{n}\sum \limits _{k=1}^{K}\sum \limits _{i=1}^{n}f(b_{\tau _k})\Gamma Z_iZ_i^T\Gamma ^T\right\} Q_n\\&\quad +\frac{1}{\sqrt{n}}\sum \limits _{k=1}^K \sum _{i=1}^{n}f(b_{\tau _k})r_i\left\{ R_{nk}+(\Gamma Z_i)^TQ_n\right\} +o(1). \end{aligned}$$

Define \(R_n=B_n-E(B_n|Z_i)\). It can be shown that \(R_n=o_p(1)\). Therefore, we have

$$\begin{aligned} \mathcal {L}_n= & {} \sum _{k=1}^{K}\sum _{i=1}^{n}\frac{R_{nk}+(\Gamma Z_i)^TQ_n}{\sqrt{n}}\eta _{ik}+E(B_n|Z_i)+R_n\\= & {} \frac{1}{2}f(b_{\tau _k})R_{nk}^2+\frac{1}{\sqrt{n}}\sum \limits _{k=1}^K \sum _{i=1}^{n}\left\{ \eta _{ik}+f(b_{\tau _k})r_i\right\} R_{nk}+\frac{1}{2}Q_n^TS_nQ_n\\&\quad +\frac{1}{\sqrt{n}}\sum \limits _{k=1}^K \sum _{i=1}^{n}\left\{ \eta _{ik}+f(b_{\tau _k})r_i\right\} (\Gamma Z_i)^TQ_n+o_p(1), \end{aligned}$$

where \(S_n=\frac{1}{n}\sum \nolimits _{k=1}^{K}\sum \nolimits _{i=1}^{n}f(b_{\tau _k})\Gamma Z_iZ_i^T\Gamma ^T\). It can been shown that \(S_n=E(S_n)+o_p(1)=\sum \nolimits _{k=1}^{K}f(b_{\tau _k})\Gamma \Sigma _{ZZ^T}\Gamma ^T=o_p(1)\).

Since \(\mathcal {L}_n\) is a convex function, we have

$$\begin{aligned} \sqrt{n}(\hat{\beta }^\mathrm{CQR}-\beta )= & {} -\frac{\left( \Gamma \Sigma _{ZZ^T}\Gamma ^T\right) ^{-1}}{\sum \nolimits _{k=1}^{K}f(b_{\tau _k})}\sum _{k=1}^{K}\sum _{i=1}^{n}n^{-\frac{1}{2}} (\Gamma Z_i)\left\{ \eta _{ik}+f(b_{\tau _k})r_i\right\} +o_p(1)\\= & {} -\frac{\left( \Gamma \Sigma _{ZZ^T}\Gamma ^T\right) ^{-1}}{\sum \nolimits _{k=1}^{K}f(b_{\tau _k})}\sum _{k=1}^{K}\sum _{i=1}^{n}n^{-\frac{1}{2}} (\Gamma Z_i)\left\{ \eta _{ik}{+}f(b_{\tau _k})\upsilon _i^T\beta \right\} {+}o_p(1). \end{aligned}$$

It is easy to obtain that

$$\begin{aligned} \text {E}\left( \sum _{k=1}^{K}\sum _{i=1}^{n}n^{-\frac{1}{2}} (\Gamma Z_i)\left\{ \eta _{ik}+f(b_{\tau _k})\upsilon _i^T\beta \right\} \right) =0 \end{aligned}$$

and

$$\begin{aligned} \text {Var}\left( \sum _{k=1}^{K}\sum _{i=1}^{n}n^{-\frac{1}{2}} (\Gamma Z_i)\left\{ \eta _{ik}+f(b_{\tau _k})\upsilon _i^T\beta \right\} \right) =\Gamma \Sigma _{ZZ^T}\Gamma ^T\sum \limits _{k=1}^K\sum \limits _{k'=1}^K\psi (\tau _k,\tau _{k'}). \end{aligned}$$

Then the proof of Theorem 1 is concluded by the Central Limit Theorem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Yang, Y. Composite quantile regression estimation of linear error-in-variable models using instrumental variables. Metrika 83, 1–16 (2020). https://doi.org/10.1007/s00184-019-00734-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-019-00734-5

Keywords

Mathematics Subject Classification

Navigation