Skip to main content
Log in

The Behrens–Fisher problem with covariates and baseline adjustments

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The Welch–Satterthwaite t test is one of the most prominent and often used statistical inference methods in applications. The approach is, however, not flexible with respect to adjustments for baseline values or other covariates, which may impact the response variable. Existing analysis of covariance models are typically based on the assumption of equal variances across the groups. This assumption is hard to justify in real data applications and the methods tend not to control the type-1 error rate satisfactorily under variance heteroscedasticity. In the present paper, we tackle this problem and develop unbiased variance estimators of group specific variances, and especially of the variance of the estimated adjusted treatment effect in a general analysis of covariance model. These results are used to generalize the Welch–Satterthwaite t test to covariates adjustments. Extensive simulation studies show that the method accurately controls the nominal type-1 error rate, even for very small sample sizes, moderately skewed distributions and under variance heteroscedasticity. A real data set motivates and illustrates the application of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bell RM, McCaffrey DF (2002) Bias reduction in standard errors for linear regression with multi-stage samples. Surv Methodol 28(2):169–181

    Google Scholar 

  • Beyersmann J, Termini SD, Pauly M (2013) Weak convergence of the wild bootstrap for the Aalen–Johansen estimator of the cumulative incidence function of a competing risk. Scand J Stat 40(3):387–402

    Article  MathSciNet  Google Scholar 

  • Box GEP (1954) Some theorems on quadratic forms applied in the study of analysis of variance problems, I. effect of inequality of variance in the one-way classification. Ann Math Stat 25(2):290–302

    Article  MathSciNet  Google Scholar 

  • Brunner E, Dette H, Munk A (1997) Box-type approximations in nonparametric factorial designs. J Am Stat Assoc 92(440):1494–1502

    Article  MathSciNet  Google Scholar 

  • Cameron AC, Gelbach JB, Miller DL (2008) Bootstrap-based improvements for inference with clustered errors. Rev Econ Stat 90(3):414–427

    Article  Google Scholar 

  • Derrick B, Toher D, White P (2016) Why Welch’s test is type 1 error robust. Quant Methods Psychol 12(1):30–38

    Article  Google Scholar 

  • Dobriban E, Su WJ (2018) Robust inference under heteroskedasticity via the hadamard estimator. arXiv:180700347

  • EMA (2015) Guideline on adjustment for baseline covariates. Available from: http://www.ema.europa.eu/ema/

  • Flachaire E (2002) Bootstrapping heteroskedasticity consistent covariance matrix estimator. Comput Stat 17(4):501–506

    Article  MathSciNet  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, StahelWA (2011) Robust statistics: the approach based on influence functions, vol 196. Wiley, Hoboken

    Google Scholar 

  • Harwell M (2003) Summarizing monte carlo results in methodological research: the single-factor, fixed-effects ancova case. J Educ Behav Stat 28(1):45–70

    Article  Google Scholar 

  • Hayes AF, Li C (2007) Using heteroskedasticity-consistent standard error estimators in ols regression: an introduction and software implementation. Behav Res Methods 39(4):709–722

    Article  Google Scholar 

  • Huber PJ (2011) Robust statistics. In: International Encyclopedia of statistical science. Springer, New York, pp 1248–1251

    Chapter  Google Scholar 

  • Imbens GW, Kolesar M (2016) Robust standard errors in small samples: some practical advice. Rev Econ Stat 98(4):701–712

    Article  Google Scholar 

  • Kesselman HJ, Algina J, Lix LM, Wilcox RR, Deering KN (2008) A generally robust approach for testing hypotheses and setting confidence intervals for effect sizes. Psychol Methods 13(2):110–129

    Article  Google Scholar 

  • Liu Y (1988) Bootstrap procedures under some non-i.i.d. models. Ann Stat 16(4):1696–1708

    Article  MathSciNet  Google Scholar 

  • Long JS, Ervin LH (2000) Using heteroscedasticity consistent standard errors in the linear regression model. Am Stat 54(3):217–224

    Google Scholar 

  • MacKinnon J, White H (1985) Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. J Econom 29(3):305–325

    Article  Google Scholar 

  • Mammen E (1993) Bootstrap and wild bootstrap for high dimensional linear models. Ann Stat 77:255–285

    Article  MathSciNet  Google Scholar 

  • Patnaik PB (1949) The non-central \(\chi ^2\) and \(F\) distribution and their applications. Biometrika 36:202–232

    MathSciNet  MATH  Google Scholar 

  • Ruxton GD (2006) The unequal variance t-test is an underused alternative to Student’s t test and the Mann–Whitney U test. Behav Ecol 17(4):688–690

    Article  Google Scholar 

  • Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biom Bull 2(6):110–114

    Article  Google Scholar 

  • Searle SR (1987) Linear models for unbalanced data. Wiley, New York

    MATH  Google Scholar 

  • Seber GAF, Lee AJ (1977) Linear regression analysis. Wiley, New York

    MATH  Google Scholar 

  • Staudte RG, Sheather SJ (2011) Robust estimation and testing, vol 918. Wiley, New York

    MATH  Google Scholar 

  • Tipton E (2015) Small sample adjustments for robust variance estimation with metaregression. Psychol Methods 20(3):375–393

    Article  Google Scholar 

  • Welch BL (1947) The generalization of ’student’s’ problem when several different population variances are involved. Biometrika 34(1/2):28–35

    Article  MathSciNet  Google Scholar 

  • White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48(4):817–838

    Article  MathSciNet  Google Scholar 

  • Wilcox RR (2011) Introduction to robust estimation and hypothesis testing. Academic Press, Cambridge

    MATH  Google Scholar 

  • Wu CFJ (1986) Jackknife, bootstrap and other resampling methods in regression analysis. Ann Stat 14:1261–1295

    Article  MathSciNet  Google Scholar 

  • Young A (2016) Improved, nearly exact, statistical inference with robust and clustered covariance matrices using effective degrees of freedom corrections. Manuscript, London School of Economics

  • Zimmermann G, Pauly M, Bathke AC (2019) Small-sample performance and underlying assumptions of a bootstrap-based inference method for a general analysis of covariance model with possibly heteroskedastic and nonnormal errors. Stat Methods Med Res (to appear). https://doi.org/10.1177/0962280218817796

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor, Associate Editor and two anonymous referees for their careful reading of our manuscript and valuable suggestions, which led to a improved version of the paper. The research has been supported by the German Research Foundation (DFG KO 4680/3-2 and DFG PA 2409/3-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Konietschke.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 236 KB)

Appendix: Proofs

Appendix: Proofs

1.1 A.1. Proof of Theorem 1

Let \(\varvec{B}_i (\varvec{B}_i'\varvec{B}_i)^{-1} \varvec{B}_i'=\varvec{P}_{n_i}\), \(i=1, 2\) denote the projection matrix for each group in the linear model separately. Computing the expectation of the quadratic form yields

$$\begin{aligned}&(n_i-1-r(\varvec{M}_i))E(\widehat{\sigma }_i^2) =E(\varvec{Y}_i'\varvec{Q}_i\varvec{Y}_i) \\&\quad =E(\varvec{Y}_i'(\varvec{I}_{n_i}-\varvec{P}_{n_i})\varvec{Y}_i) \\&\quad =(\varvec{Xb}+ \varvec{Mp})'(\varvec{I}_{n_i}-\varvec{P}_{n_i})(\varvec{Xb}+ \varvec{Mp})+tr((\varvec{I}_{n_i}-\varvec{P}_{n_i})\sigma _i^2\varvec{I}) \\&\quad =(\varvec{Xb}+ \varvec{Mp})'((\varvec{Xb}+ \varvec{Mp})-(\varvec{Xb}+ \varvec{Mp}))+(n_i-1-r(\varvec{M}_i))\sigma _i^2 \\&\quad =(n_i-1-r(\varvec{M}_i))\sigma _i^2,\quad i=1, 2. \end{aligned}$$

Thus, \(\widehat{\sigma }_i^2\) is an unbiased estimator of \(\sigma _i^2\), \(i=1, 2\). Next, the consistency of the variance estimators will be shown. We compute the variance of the quadratic form \(\widehat{\sigma }_i^2\) and obtain

$$\begin{aligned} Var(\varvec{Y}_i'\varvec{Q}_i\varvec{Y}_i)=(\mu _4-3\sigma _i^4)\varvec{q}_i'\varvec{q}_i+2\sigma _i^4tr(\varvec{\varvec{Q}_i}^2)+4\sigma _i^2\varvec{\mu }_i'{\varvec{Q}_i}^2\varvec{\mu }_i+4\mu _3\varvec{\mu }_i'\varvec{Q}_i\varvec{q}_i, \end{aligned}$$

where \(\varvec{\mu }_i=E(\varvec{Y}_i)\), \(\varvec{q}_i=diag\{\varvec{Q}_i\}\), the vector of diagonal elements of \(\varvec{Q}_i\). Here, \(\mu _3\) and \(\mu _4\) denote the skewness and kurtosis of the error distributions, respectively. Using the properties of projection matrix \(\varvec{P}_{n_i}\), we get \(0\le \varvec{q}_i'\varvec{q}_i\le n_i+tr(\varvec{P}_{n_i})=n_i+1+r(\varvec{M}_i)\) and \(tr(\varvec{Q}_i^2)=tr(\varvec{Q}_i)=n_i-1-rank(\varvec{M}_i)\). Since \({\varvec{Q}_i}^2=\varvec{Q}_i, {\varvec{Q}_i}^2\varvec{\mu }_i=\varvec{Q}_i\varvec{\mu }_i=(\varvec{I}_{n_i}-\varvec{P}_{n_i})\varvec{\mu }_i=0\). Furthermore, \(\varvec{\mu }_i'\varvec{Q}_i\varvec{q}_i=(\varvec{Q}_i\varvec{\mu }_i)'\varvec{q}_i=0\). In conclusion, the \(L_2\)-convergence follows, because

$$\begin{aligned} Var(\varvec{Y}_i'\varvec{Q}_i\varvec{Y}_i)/(n_i-1-rank(\varvec{M}_i))^2\xrightarrow {L_2}0 ,\quad n_i \rightarrow \infty . \end{aligned}$$

1.2 A.2. Derivation of (3.2)

$$\begin{aligned} {\sigma }^2_{\varvec{b}}= & {} Var(\sqrt{N}(\widehat{b}_1 - \widehat{b}_2)) \nonumber \\= & {} N\varvec{c}' \varvec{D}\varvec{\varSigma }\varvec{D}'\varvec{c}\nonumber \\= & {} N \varvec{c}' \left( \begin{array}{cc} \sum \limits _{j=1}^{n_1} d_{1j}^2\sigma _1^2 + \sum \limits _{j=n_1+1}^{N} d_{1j}^2\sigma _2^2 &{} \sum \limits _{j=1}^{n_1} A_j \sigma _1^2 + \sum \limits _{j=n_1+1}^{N} A_j\sigma _2^2\\ \sum \limits _{j=1}^{n_1} A_j \sigma _1^2 + \sum \limits _{j=n_1+1}^{N} A_j \sigma _2^2 &{} \sum \limits _{j=1}^{n_1} d_{2j}^2\sigma _1^2 + \sum \limits _{j=n_1+1}^{N} d_{2j}^2\sigma _2^2\\ \end{array} \right) \varvec{c}\nonumber \\= & {} N \left( \sigma _1^2\sum _{j=1}^{n_1} (d_{1j}-d_{2j})^2 + \sigma _2^2\sum _{j=n_1+1}^N (d_{1j}-d_{2j})^2\right) \nonumber \\\equiv & {} N\left( \sigma _1^2 n_1^*+ \sigma _2^2 n_2^*\right) . \end{aligned}$$
(7.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Pauly, M. & Konietschke, F. The Behrens–Fisher problem with covariates and baseline adjustments. Metrika 83, 197–215 (2020). https://doi.org/10.1007/s00184-019-00729-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-019-00729-2

Keywords

Navigation