Skip to main content
Log in

Elfving’s theorem for R-optimality of experimental designs

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The present paper is devoted to the construction of R-optimal designs in multiresponse linear models. The R-optimality criterion introduced by Dette (J R Stat Soc Ser B 59:97–110, 1997) minimizes the volume of Bonferroni rectangular confidence region for the parameter estimation. A generalization of Elfving’s theorem is proved for the optimal designs with respect to R-optimality, which gives a geometric characterization of R-optimal designs. The geometric characterizations of the R-optimal designs are illustrated by four examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chernoff H (1999) Elfving’s impact on experimental design. Stat Sci 12:201–205

    Article  MathSciNet  Google Scholar 

  • Dette H (1993) Elfving’s theorem for D-optimality. Ann Stat 21:753–766

    Article  MathSciNet  Google Scholar 

  • Dette H (1996) A note on bayesian \(c\)- and \(D\)-optimal designs in nonlinear regression models. Ann Stat 24:1225–1234

    Article  MathSciNet  Google Scholar 

  • Dette H (1997) Designing experiments with respect to “standardized” optimality criteria. J R Stat Soc Ser B 59:97–110

    Article  MathSciNet  Google Scholar 

  • Dette H, Holland-Letz T (2009) A geometric characterization of c-optimal designs for heteroscedastic regression. Ann Stat 37:4088–4103

    Article  MathSciNet  Google Scholar 

  • Dette H, Studden WJ (1994) A geometric solution of the Bayesian E-optimal design problem. In: Gupta SS, Berger JO (eds) Statistical decision theory and related topics V. Springer, New York, NY

  • Dette H, Heiligers B, Studden WJ (1995) Minimax designs in linear regression models. Ann Stat 23:30–40

    Article  MathSciNet  Google Scholar 

  • Elfving G (1952) Optimum allocation in linear regression theory. Ann Math Stat 23:255–262

    Article  MathSciNet  Google Scholar 

  • Haines LM (1995) A geometric approach to optimal design for one-parameter non-linear models. J R Stat Soc Ser B 57:575–598

    MathSciNet  MATH  Google Scholar 

  • He L, Yue R-X (2017) \(R\)-optimal designs for multi-factor models with heteroscedastic errors. Metrika 80:717–732

    Article  MathSciNet  Google Scholar 

  • Holland-Letz T, Dette H, Pepelyshev A (2011) A geometric characterization of optimal designs for regression models with correlated observations. J R Stat Soc Ser B 73:239–252

    Article  MathSciNet  Google Scholar 

  • Huang M-NL, Chen RB, Lin CS, Wong WK (2006) Optimal designs for parallel models with correlated responses. Stat Sin 16:121–133

    MathSciNet  MATH  Google Scholar 

  • Kiefer J (1974) General equivalence theory for optimum designs (approximate theory). Ann Stat 2:849–879

    Article  MathSciNet  Google Scholar 

  • Liu X, Yue R-X (2013) A note on R-optimal designs for multiresponse models. Metrika 76:483–493

    Article  MathSciNet  Google Scholar 

  • Liu X, Yue R-X, Lin Dennis KJ (2013) Optimal design for prediction in multiresponse linear models based on rectangular confidence region. J Stat Plan Inference 143:1954–1967

    Article  MathSciNet  Google Scholar 

  • Liu X, Yue R-X, Chatterjee K (2014a) A note on R-optimal designs for multi-factor models. J Stat Plan Inference 146:139–144

    Article  MathSciNet  Google Scholar 

  • Liu X, Yue R-X, Chatterjee K (2014b) \(R\)-optimal designs in random coefficient regression models. Stat Probab Lett 88:127–132

    Article  MathSciNet  Google Scholar 

  • Liu X, Yue R-X, Chatterjee K (2016) Algorithmic construction of R-optimal designs for second-order response surface models. J Stat Plan Inference 178:61–69

    Article  MathSciNet  Google Scholar 

  • Pukelsheim F (1993) Optimal design of experiments. Wiley, New York

    MATH  Google Scholar 

  • Studden WJ (1971) Elfving’s theorem and optimal designs for quadratic loss. Ann Stat 42:1613–1621

    Article  MathSciNet  Google Scholar 

  • Studden WJ (2005) Elfving’s theorem revisited. J Stat Plan Inference 130:85–94

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Xian Yue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSFC Grant 11871143.

Appendix

Appendix

1.1 Proof of Theorem 2

Here we present the proof by using similar arguments in Dette (1993) and invoking Theorem 1.

Let \(\xi ^*=\bigg \{\begin{array}{c} {\varvec{x}}_v \\ w_v \end{array} \bigg \}_{v=1}^s\) denote an R-optimal design for the model (1). By Theorem 1 we have

$$\begin{aligned} \phi ({\varvec{x}},\xi ^*)= & {} \text{ tr }\left\{ {{\varvec{M}}}^{-1}(\xi ^*){{\varvec{F}}}^T({{\varvec{x}}}){\varvec{\Sigma }}^{-1} {{\varvec{F}}}({{\varvec{x}}}){{\varvec{M}}}^{-1}(\xi ^*) \right. \nonumber \\&\quad \left. \left( \sum _{i=1}^p\displaystyle \frac{{{\varvec{e}}}_i{{\varvec{e}}}_i^T}{{{\varvec{e}}}_i^T{{\varvec{M}}}^{-1}(\xi ^*){{\varvec{e}}}_i} \right) \right\} \leqslant p \end{aligned}$$
(18)

for all \({\varvec{x}}\in \mathcal {X}\), and

$$\begin{aligned} \phi ({\varvec{x}}_v,\xi ^*)=p \end{aligned}$$
(19)

for all \(v=1,\ldots ,s\). Letting \(\gamma _{i}^{-2}=p{\varvec{e}}_{i}^T{\varvec{M}}^{-1}(\xi ^*){\varvec{e}}_{i}, i=1, \ldots , p\) and \({\varvec{D}}={\varvec{M}}^{-1}(\xi ^*){\varvec{\Gamma }}\), it follows that

$$\begin{aligned}{\varvec{\Gamma }}={\varvec{M}}(\xi ^*){\varvec{D}}=\sum _{v=1}^{s}w_v{\varvec{F}}^T{({\varvec{x}}_v)}{\varvec{\Sigma }}^{-1/2}{\varvec{K}}_{v}, \end{aligned}$$

where \({\varvec{K}}_{v}={\varvec{\Sigma }}^{-1/2}{\varvec{F}}({\varvec{x}}_v){\varvec{D}}\), \(v=1,\ldots ,s\). This proves the representation given in (a). Moreover, from these definitions and the fact in (19) we have

$$\begin{aligned} \parallel {\varvec{K}}_{v}\parallel ^2= & {} \text{ tr }\left\{ {\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}_v){\varvec{D}}\right\} \nonumber \\= & {} \text{ tr }\{{\varvec{\Gamma }}{\varvec{M}}^{-1}(\xi ^*){\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}_v){\varvec{M}}^{-1}(\xi ^*){\varvec{\Gamma }}\} \nonumber \\= & {} \text{ tr }\{{\varvec{M}}^{-1}(\xi ^*){\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}_v){\varvec{M}}^{-1}(\xi ^*){\varvec{\Gamma }}{\varvec{\Gamma }}\} \nonumber \\= & {} 1. \end{aligned}$$
(20)

From the inequality (18) and the Cauchy–Schwarz inequality we get

$$\begin{aligned} \left( \text{ tr }\{{\varvec{D}}^T{\varvec{F}}^T{({\varvec{x}})}{\varvec{\Sigma }}^{-1/2}{\varvec{K}}\}\right) ^2\leqslant \text{ tr }\{{\varvec{K}}^T{\varvec{K}}\}\text{ tr }\{{\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}){\varvec{\Sigma }}^{-1/2}{\varvec{\Sigma }}^{-1/2}{\varvec{F}}({\varvec{x}}){\varvec{D}}\}\leqslant 1 \end{aligned}$$

for all \({\varvec{x}}\in \mathcal {X}\), whenever the matrix \({\varvec{K}}\) satisfies the equation \(\parallel {\varvec{K}}\parallel =1\). Observing (20) it is now easy to see that the point \({\varvec{\Gamma }}\) is a boundary point of the set \(\mathcal {R}\) with supporting hyperplane \({\varvec{D}}\) which proves (b). Finally, the condition (c) follows readily from the definitions of \({\varvec{\Gamma }}\) and \({\varvec{D}}\).

To prove sufficiency, we let \({\varvec{D}}\in \mathbb {R}^{p\times p}\) denote a supporting hyperplane to the set \(\mathcal {R}_{p,r}\) at the boundary point \({\varvec{\Gamma }}\). Thus we have for all \({\varvec{x}}\in \mathcal {X}\) and \({\varvec{K}}\) satisfying \(\parallel {\varvec{K}}\parallel =1,\)

$$\begin{aligned} \left| \text{ tr }\{{\varvec{D}}^T{\varvec{F}}^T{({\varvec{x}})}{\varvec{\Sigma }}^{-1/2}{\varvec{K}}\}\right| \leqslant 1. \end{aligned}$$
(21)

Defining \({\varvec{K}}({\varvec{x}})={\varvec{\Sigma }}^{-1/2}{\varvec{F}}({\varvec{x}}){\varvec{D}}/\sqrt{\text{ tr }\{{\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}){\varvec{D}}\}}\), we observe from (21) that

$$\begin{aligned} \text{ tr }\{{\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}){\varvec{D}}\}\leqslant 1 \quad {\text {for}}~ {\text {all}}\;\;{\varvec{x}}\in \mathcal {X}. \end{aligned}$$
(22)

Because \({\varvec{D}}\) is a supporting hyperplane to \(\mathcal {R}_{p,r}\) at the boundary point \({\varvec{\Gamma }}\) we obtain from (21) (used at \({\varvec{x}}={\varvec{x}}_v\)) and the representation (a)

$$\begin{aligned} 1=\text{ tr }\{{\varvec{D}}^T{\varvec{\Gamma }}\} =\sum _{v=1}^{s}w_v\text{ tr }\left\{ {\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1/2}{\varvec{K}}_{v}\right\} \leqslant 1 \end{aligned}$$

and this implies \(\text{ tr }\left\{ {\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1/2}{\varvec{K}}_{v}\right\} =1, v=1,\ldots ,s\). By an application of the Cauchy–Schwarz inequality we now get for \(v=1,\ldots ,s\)

$$\begin{aligned} 1= & {} \left( \text{ tr }\left\{ {\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1/2}{\varvec{K}}_{v}\right\} \right) ^2 \nonumber \\\leqslant & {} \text{ tr }\{{\varvec{K}}_v^T{\varvec{K}}_v\}\text{ tr }\left\{ {\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1}{\varvec{F}}{({\varvec{x}}_v)}{\varvec{D}}\right\} \leqslant 1, \end{aligned}$$
(23)

where the last inequality results from (22). Therefore, we have \({\varvec{K}}_{v}=\lambda _v{\varvec{\Sigma }}^{-1/2}{\varvec{F}}({\varvec{x}}_v){\varvec{D}}\) for some \(\lambda _v \in \mathbb {R}, v=1,\ldots ,s.\) From the normalizing conditions on the \({\varvec{K}}_{v}\) we thus obtain

$$\begin{aligned} 1=\parallel {\varvec{K}}_{v}\parallel ^2 =\lambda _v^2\text{ tr }\left\{ {\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}_v){\varvec{D}}\right\} =\lambda _v^2, \quad v=1,\ldots ,s. \end{aligned}$$
(24)

On the other hand, we have from the property that \({\varvec{\Gamma }}\) is a boundary point of \(\mathcal {R}_{p,r}\) with supporting hyperplane \({\varvec{D}}\)

$$\begin{aligned} 1= & {} \text{ tr }\{{\varvec{D}}^T{\varvec{\Gamma }}\}=\sum \limits _{v=1}^{s}w_v\text{ tr }\left\{ {\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1/2}{\varvec{K}}_{v}\right\} \\= & {} \sum \limits _{v=1}^{s}w_v\lambda _v\text{ tr }\left\{ {\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}_v){\varvec{D}}\right\} =\sum \limits _{v=1}^{s}w_v\lambda _v. \end{aligned}$$

It follows from (24) and noting \(w_v> 0\) and \(\sum _{v=1}^{s}w_v=1\) that \(\lambda _v=1\) which implies \({\varvec{K}}_{v}={\varvec{\Sigma }}^{-1/2}{\varvec{F}}({\varvec{x}}_v){\varvec{D}}, v=1,\ldots ,s.\) From this representation we finally obtain

$$\begin{aligned} {\varvec{\Gamma }}=\sum _{v=1}^{s}w_v{\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1/2}{\varvec{K}}_{v} =\sum _{v=1}^{s}w_v{\varvec{F}}^T({\varvec{x}}_v){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}_v){\varvec{D}}={\varvec{M}}(\xi ^*){\varvec{D}}. \end{aligned}$$

Observing condition (c) it follows

$$\begin{aligned} \displaystyle \frac{1}{p}={\varvec{e}}_{i}^T{\varvec{D}}^T{\varvec{\Gamma }}{\varvec{e}}_{i} ={\varvec{e}}_{i}^T{\varvec{\Gamma }}^T{\varvec{M}}^{-1}(\xi ^*){\varvec{\Gamma }}{\varvec{e}}_{i} =\gamma _{i}^2{\varvec{e}}_{i}^T{\varvec{M}}^{-1}(\xi ^*){\varvec{e}}_{i} \end{aligned}$$

and the inequality (22) yields

$$\begin{aligned}&\text{ tr }\{{\varvec{D}}^T{\varvec{F}}^T({\varvec{x}}){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}){\varvec{D}}\} \\&\quad =\text{ tr }\{{\varvec{\Gamma }}^T{{\varvec{M}}}^{-1}(\xi ^*){\varvec{F}}^T({\varvec{x}}){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}){{\varvec{M}}}^{-1}(\xi ^*){\varvec{\Gamma }}\}\\&\quad =\text{ tr }\{{{\varvec{M}}}^{-1}(\xi ^*){\varvec{F}}^T({\varvec{x}}){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}){{\varvec{M}}}^{-1}(\xi ^*){\varvec{\Gamma }}{\varvec{\Gamma }}^T\}\\&\quad =p\,\text{ tr }\left\{ {{\varvec{M}}}^{-1}(\xi ^*){\varvec{F}}^T({\varvec{x}}){\varvec{\Sigma }}^{-1}{\varvec{F}}({\varvec{x}}){{\varvec{M}}}^{-1}(\xi ^*) \sum \limits _{i=1}^{p}\displaystyle \frac{{\varvec{e}}_{i}{\varvec{e}}_{i}^T}{{\varvec{e}}_{i}^T{M}^{-1}(\xi ^*){\varvec{e}}_{i}}\right\} \\&\quad \leqslant p \end{aligned}$$

for all \({\varvec{x}}\in \mathcal {X}\). By Theorem 1 it then immediately follows that the design \(\xi ^*\) is R-optimal for the model (1), which completes the proof of Theorem 2.

1.2 Proof of the result in (15)

By \(\mathcal {S}\) denote the set in the right side of (15), i.e.,

$$\begin{aligned} \mathcal {S}=\left\{ \left( \begin{array}{cc} h_1 &{}\quad h_2\\ h_3 &{}\quad h_4\end{array} \right) \bigg | h_1^2+h_2^2\leqslant 1,\sqrt{h_3^2+h_4^2}\leqslant 1-\sqrt{h_1^2+h_2^2}\right\} . \end{aligned}$$

We first show that \(\mathcal {S}\) is convex and then show that \(\mathcal {S}=\text {conv}(\mathcal {H})\) where \(\mathcal {H}\) is defined by (14).

For any \({\varvec{U}}=\left( \begin{array}{cc} u_1 &{}\quad u_2\\ u_3 &{}\quad u_4\end{array} \right) \in \mathcal {S}\) and \({\varvec{V}}=\left( \begin{array}{cc} v_1 &{}\quad v_2\\ v_3 &{}\quad v_4\end{array} \right) \in \mathcal {S}\), we have

$$\begin{aligned}\sqrt{u_1^2+u_2^2}+\sqrt{u_3^2+u_4^2}\leqslant 1\end{aligned}$$

and

$$\begin{aligned}\sqrt{v_1^2+v_2^2}+\sqrt{v_3^2+v_4^2}\leqslant 1.\end{aligned}$$

Thus, for any \(t\in [0,1]\), \({\varvec{W}}=\left( \begin{array}{cc} w_1 &{}\quad w_2\\ w_3 &{}\quad w_4\end{array} \right) =(1-t){\varvec{U}}+t{\varvec{V}}\in \mathcal {S}\), which follows from

$$\begin{aligned}&\sqrt{w_1^2+w_2^2}+\sqrt{w_3^2+w_4^2}\\&\quad \leqslant \left[ (1-t)\sqrt{u_1^2+u_2^2}+t\sqrt{v_1^2+v_2^2}\right] +\left[ (1-t)\sqrt{u_3^2+u_4^2}+t\sqrt{v_3^2+v_4^2}\right] \\&\quad =(1-t)\left[ \sqrt{u_1^2+u_2^2}+\sqrt{u_3^2+u_4^2}\right] +t\left[ \sqrt{v_1^2+v_2^2}+\sqrt{v_3^2+v_4^2}\right] \\&\quad \leqslant 1. \end{aligned}$$

Therefore, we conclude that \(\mathcal {S}\) is a convex set. Next, we prove that \(\text {conv}(\mathcal {H})=\mathcal {S}\).

Let us replace \({\varvec{\epsilon }}\) by \({\varvec{\epsilon }}=(\epsilon _{1}, \epsilon _{2})^T.\) Then

$$\begin{aligned} \mathcal {H}= & {} \left\{ \left( \begin{array}{cc} h_1 &{}\quad h_2\\ h_3 &{}\quad h_4\end{array}\right) =\left( \begin{array}{cc}(1-x)\epsilon _1 &{}\quad (1-x)\epsilon _2 \\ x^2\epsilon _1 &{}\quad x^2\epsilon _2\end{array} \right) \big | 0\leqslant x\leqslant 1, \; \epsilon _1^2+\epsilon _{2}^2=1\right\} \\= & {} \left\{ \left( \begin{array}{cc} h_1 &{}\quad h_2\\ h_3 &{}\quad h_4\end{array}\right) \big | h_1^2+h_2^2= (1-x)^2,\; h_3^2+h_4^2=x^4,\; 0\leqslant x\leqslant 1\right\} . \end{aligned}$$

Define

$$\begin{aligned}\mathcal {H}_1=\left\{ \left( \begin{array}{cc} h_1 &{}\quad h_2\\ h_3 &{}\quad h_4\end{array}\right) \big |h_1^2+h_2^2=1, h_3=h_4=0\right\} \end{aligned}$$

and

$$\begin{aligned} \mathcal {H}_2=\left\{ \left( \begin{array}{cc} h_1 &{}\quad h_2\\ h_3 &{}\quad h_4\end{array}\right) \big |h_3^2+h_4^2=1, h_1=h_2=0\right\} . \end{aligned}$$

It is to be noted that \(\mathcal {H}_1\) and \(\mathcal {H}_2\) are subsets of \(\mathcal {H}\) corresponding to \(x=0\) and \(x=1\), respectively. Moreover, it is easy to check that

$$\begin{aligned}\text {conv}(\mathcal {H}_1)=\left\{ \left( \begin{array}{cc} h_1 &{}\quad h_2\\ h_3 &{}\quad h_4\end{array}\right) \big |h_1^2+h_2^2\leqslant 1, h_3=h_4=0\right\} \end{aligned}$$

and

$$\begin{aligned}\text {conv}(\mathcal {H}_2)=\left\{ \left( \begin{array}{cc} h_1 &{}\quad h_2\\ h_3 &{}\quad h_4\end{array}\right) \big |h_3^2+h_4^2\leqslant 1, h_1=h_2=0\right\} .\end{aligned}$$

In what follows, we shall prove both \(\text {conv}(\mathcal {H})\subset \mathcal {S}\) and \(\mathcal {S}\subset \text {conv}(\mathcal {H})\) hold, respectively. First, for any \({\varvec{H}}=\left( \begin{array}{cc} h_1 &{}\quad h_2\\ h_3 &{}\quad h_4\end{array}\right) \in \mathcal {H}\), we have

$$\begin{aligned}0\leqslant h_1^2+h_2^2\leqslant 1,\quad \sqrt{h_1^2+h_2^2}+\sqrt{h_3^2+h_4^2}=(1-x)+x^2\leqslant 1, \end{aligned}$$

which implies \({\varvec{H}}\in \mathcal {S}\). It means that \(\mathcal {H}\subset \mathcal {S}\) and hence \(\text {conv}(\mathcal {H})\subset \text {conv}(\mathcal {S})=\mathcal {S}\). Secondly, we will prove that

  1. (i)

    \(\mathcal {S}\subset \text {conv}\left( \text {conv}(\mathcal {H}_1)\cup \text {conv}(\mathcal {H}_2)\right) \), and

  2. (ii)

    \(\text {conv}\left( \text {conv}(\mathcal {H}_1)\cup \text {conv}(\mathcal {H}_2)\right) \subset \text {conv}(\mathcal {H})\).

Let \({\varvec{H}}=\left( \begin{array}{cc} h_1 &{}\quad h_2\\ h_3 &{}\quad h_4\end{array}\right) \) be any element of \(\mathcal {S}\). It is obvious that if \({\varvec{H}}\) is a null matrix then \({\varvec{H}}\in \mathcal {H}\). For the non-null \({\varvec{H}}\), we let

$$\begin{aligned}z=\displaystyle \frac{\sqrt{h_1^2+h_2^2}}{\sqrt{h_1^2+h_2^2}+\sqrt{h_3^2+h_4^2}},\end{aligned}$$

and then we can rewrite \({\varvec{H}}\) as

$$\begin{aligned} {\varvec{H}}= & {} z\left( \begin{array}{cc}h_1/z &{}\quad h_2/z\\ 0 &{}\quad 0\end{array}\right) +(1-z)\left( \begin{array}{cc}0 &{} 0 \\ h_3/(1-z) &{} h_4/(1-z)\end{array}\right) \\= & {} z{\varvec{U}}+(1-z){\varvec{V}},\quad \text{ say }. \end{aligned}$$

Note that

$$\begin{aligned}\Vert {\varvec{U}}\Vert =\displaystyle \frac{\sqrt{h_1^2+h_2^2}}{z}=\sqrt{h_1^2+h_2^2}+\sqrt{h_3^2+h_4^2}\leqslant 1\end{aligned}$$

and

$$\begin{aligned}\Vert {\varvec{V}}\Vert =\displaystyle \frac{\sqrt{h_3^2+h_4^2}}{1-z}=\sqrt{h_1^2+h_2^2}+\sqrt{h_3^2+h_4^2}\leqslant 1.\end{aligned}$$

Thus \({\varvec{U}}\in \text {conv}(\mathcal {H}_1)\) and \({\varvec{V}}\in \cup \text {conv}(\mathcal {H}_2)\). This means that \({\varvec{H}}\in \text {conv}\left( \text {conv}(\mathcal {H}_1) \text {conv}(\mathcal {H}_2)\right) \) and hence (i) holds.

As the proof of (ii), noting that \(\mathcal {H}_1\subset \mathcal {H}\) and \(\mathcal {H}_2\subset \mathcal {H}\), it immediately follows that \(\text {conv}(\mathcal {H}_1)\subset \text {conv}(\mathcal {H})\) and \(\text {conv}(\mathcal {H}_2)\subset \text {conv}(\mathcal {H}).\) We then have \((\text {conv}(\mathcal {H}_1)\cup \text {conv}(\mathcal {H}_2))\subset \text {conv}(\mathcal {H})\) which implies that \(\text {conv}\left( \text {conv}(\mathcal {H}_1)\cup \text {conv}(\mathcal {H}_2)\right) \subset \text {conv}(\text {conv}(\mathcal {H}))=\text {conv}(\mathcal {H})\). This completes the proof of the result in (15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yue, RX. Elfving’s theorem for R-optimality of experimental designs. Metrika 83, 485–498 (2020). https://doi.org/10.1007/s00184-019-00728-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-019-00728-3

Keywords

Navigation