Skip to main content
Log in

The Cucconi statistic for Type-I censored data

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Various nonparametric test statistics have been proposed for censored data. Two-sample nonparametric testing plays an important role in biometry. While most of two-sample nonparametric tests intend to detect a shift in location or in scale, the two-sample Cucconi test statistic is suitable for the joint comparison of both parameters. The Cucconi test statistic is extended to the left- and right-censored data based on the theory of ties. We derive the limiting distribution of the Cucconi test statistic for censored data. We conduct simulation studies to investigate the convergence of the Cucconi test statistic to the limiting distribution and the power of the proposed statistic with various population distributions. The method is illustrated with an analysis using real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansari AR, Bradley RA (1960) Rank-sum tests for dispersions. Ann Math Stat 31:1174–1189

    Article  MathSciNet  Google Scholar 

  • Bagdonavicius V, Kruopis J, Nikulin MS (2011) Non-parametric tests for censored data. Wiley, New York

    Book  Google Scholar 

  • Büning H (2002) Robustness and power of modified Lepage, Kolmogorov–Smirnov and Cramér–von Mises two-sample tests. J Appl Stat 29:907–924

    Article  MathSciNet  Google Scholar 

  • Büning H, Thadewald T (2000) An adaptive two-sample location-scale test of Lepage type for symmetric distributions. J Stat Comput Simul 65:287–310

    Article  MathSciNet  Google Scholar 

  • Chowdhury S, Mukherjee A, Chakraborti S (2014) A new distribution-free control chart for joint monitoring of location and scale parameters of continuous distributions. Qual Reliab Eng Int 30:191–204

    Article  Google Scholar 

  • Cucconi O (1968) Un nuovo test non parametrico per il confronto tra due gruppi campionari. G degli Econ 27:225–248

    Google Scholar 

  • Desu MM, Raghavarao D (2004) Nonparametric statistical methods for complete and censored data. Chapman & Hall/CRC Press, Boca Raton

    MATH  Google Scholar 

  • Epstein B (1954) Truncated life tests in the exponential case. Ann Math Stat 25:555–564

    Article  MathSciNet  Google Scholar 

  • Gehan EA (1965) A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 52:203–224

    Article  MathSciNet  Google Scholar 

  • Halperin M (1960) Extension of the Wilcoxon–Mann–Whitney test to samples censored at the same fixed point. J Am Stat Assoc 55:125–138

    Article  MathSciNet  Google Scholar 

  • Lepage Y (1971) A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika 58:213–217

    Article  MathSciNet  Google Scholar 

  • Marozzi M (2014) The multisample Cucconi test. Stat Methods Appl 23:209–227

    Article  MathSciNet  Google Scholar 

  • Marozzi M, Reiczigel J (2018) A progressive shift alternative to evaluate nonparametric tests for skewed data. Commun Stat Simul Comput 47:3083–3094

    Article  MathSciNet  Google Scholar 

  • Mukherjee A, Marozzi M (2017a) A distribution-free phase-II CUSUM procedure for monitoring service quality. Total Qual Manag Bus Excell 28:1227–1263

    Article  Google Scholar 

  • Mukherjee A, Marozzi M (2017b) Distribution-free Lepage type circular-grid charts for joint monitoring of location and scale parameters of a process. Qual Reliab Eng Int 33:241–274

    Article  Google Scholar 

  • Murakami H (2007) Lepage type statistic based on the modified Baumgartner statistic. Comput Stat Data Anal 51:5061–5067

    Article  MathSciNet  Google Scholar 

  • Neuhäuser M (2000) An exact two-sample test based on the Baumgartner–Weiss–Schindler statistic and a modification of Lepage’s test. Commun Stat Theory Methods 29:67–78

    Article  MathSciNet  Google Scholar 

  • Paul W, Mielke JR (1967) Note on some squared rank tests with existing ties. Technometrics 9:312–314

    Article  MathSciNet  Google Scholar 

  • Pepe MS, Fleming TR (1989) Weighted Kaplan–Meier statistics: a class of distance tests for censored survival data. Biometrics 45:497–507

    Article  MathSciNet  Google Scholar 

  • Peto R, Peto J (1972) Asymptotically efficient rank invariant test procedures. J R Stat Soc Ser A 135:185–198

    Article  Google Scholar 

  • Pettitt AN (1976) A two-sample Anderson–Darling rank statistic. Biometrika 63:161–168

    MathSciNet  MATH  Google Scholar 

  • Rutkowska A, Banasik K (2016) The Cucconi test for location-scale alternatives in application to asymmetric hydrological variables. Commun Stat Simul Comput 45:1–15

    Article  MathSciNet  Google Scholar 

  • Sugiura N (1963) On a generalization of the Wilcoxon test for censored data. Osaka Math J 15:257–268

    MathSciNet  MATH  Google Scholar 

  • Sugiura N (1964) A generalization of the Wilcoxon test for censored data II. Several-sample problem. Osaka J Math 1:165–174

    MathSciNet  MATH  Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Murakami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the second author was supported by JSPS KAKENHI Grant Number 18K11199.

Appendices

Proof of Theorem 1

First, we introduce Lemma 1 to show the Theorem 1.

Lemma 1

(Cucconi 1968) Let \(Y_1,Y_2\) be the random variables from the standard normal distribution and \(\rho _*=\mathrm{Corr}(Y_1,Y_2)\). Then,

$$\begin{aligned} T=\frac{Y_1^2+Y_2^2-2\rho _* Y_1Y_2}{2(1-\rho _*^2)} \end{aligned}$$

is distributed as the standard exponential distribution.

If we obtain that \(U_L\) (\(U_R\)) and \(V_L\) (\(V_R\)) have the asymptotic normality for the left- or right-censored data, it is easily to prove the theorem by using Lemma 1. Let \(R_{1j}^*\) be the rank of the uncensored \(X_1\)’s in \(N-r_1-r_2\) uncorrelated observations. In general, the sum of \(R{^{*}_{1j}}^{\beta }\) (\(\beta >0\)) is asymptotically distributed according to normal introduced by Halperin (1960).

1.1 Proof for the left-censored data

\(Q^{L}_{1}\) and \(Q^{L}_{2}\) are decomposed as follows:

$$\begin{aligned} Q^{L}_{1}= & {} \frac{r_1(r+1)(2r+1)}{6} + \sum _{j=r_1+1}^{n_1} R^2_{1j} = \frac{r_1(r+1)(2r+1)}{6} + \sum _{j=1}^{n'_1} (r+R^{*}_{1j})^2\\= & {} \frac{r_1(r+1)(2r+1)}{6} + \sum _{j=1}^{n'_1} \left( R^{*}_{1j} -\frac{N'+1}{2} \right) ^2 + (N+r+1)\sum _{j=1}^{n'_1} R^{*}_{1j} \\&-\frac{1}{4} n'_1(N+r+1)(N-3r+1) \\= & {} A_1+A_2+A_3+A_4\quad (\text {say}).\\ Q^{L}_{2}= & {} \frac{r_1}{r} \sum _{j=1}^{r} (N+1-j)^2+ \sum _{j=r_1+1}^{n_1} (N+1-R_{1j})^2 \\= & {} Q^{L}_{1} +n_1(N+1)^2 -r_1(N+1)(r+1) -2r (N+1)n'_1 \\&-2(N+1) \sum _{j=1}^{n'_1} R^*_{1j}\\= & {} Q^{L}_{1}+B_1+B_2+B_3+B_4\quad (\mathrm{say}), \end{aligned}$$

where \(N'=N-r\), \(n'_1=n_1-r_1\). Define that

$$\begin{aligned} M_1 =\sum _{j=1}^{n'_1} \left( R^*_{1j} - \frac{N'+1}{2} \right) ^2 ,\quad W =\sum _{j=1}^{n'_1} R^*_{1j}. \end{aligned}$$

Furthermore, put

$$\begin{aligned} t_1=\frac{M_1-\text {E}[M_1]}{\sqrt{\text {var}[M_1]}},\quad w=\frac{W-\text {E}[W]}{\sqrt{\text {var}[W]}},\quad \tau =\frac{r_1-\mathrm{E}[r_1]}{\sqrt{\mathrm{var}[r_1]}}. \end{aligned}$$

The equations \(A_1, \ldots , A_4\), \(B_1, \ldots , B_4\) are rewritten by using the constants a, b, p, q and the random variables t, w, \(\tau \). Then we obtain

Therefore, we re-formulated the \(Q^{L}_{1}\) and \(Q^{L}_{2}\) as follows:

$$\begin{aligned} Q^{L}_{1}= & {} \frac{1}{3}N^3 a + \frac{1}{6\sqrt{5}}N^{\frac{5}{2}} a^{\frac{1}{2}} b^{\frac{1}{2}} q^{\frac{5}{2}} t_1 + \frac{1}{2\sqrt{3}} N^{\frac{5}{2}} (1+p) a^{\frac{1}{2}} b^{\frac{1}{2}} q^{\frac{3}{2}} w \\&- \frac{1}{3} N^{\frac{5}{2}} (1+p) a^{\frac{1}{2}} b^{\frac{1}{2}} p^{\frac{1}{2}} q^{\frac{1}{2} }\tau +O(N^2). \\ Q^{L}_{2}= & {} Q^{L}_{1} -\frac{1}{\sqrt{3}} N^{\frac{5}{2}} a^{\frac{1}{2}} b^{\frac{1}{2}} q^{\frac{3}{2}} w - N^{\frac{5}{2}} (1-2p) a^{\frac{1}{2}} b^{\frac{1}{2}} p^{\frac{1}{2}} q^{\frac{1}{2}} \tau +O(N^2). \end{aligned}$$

Note that the moment of \(Q^{L}_{1}\) and \(Q^{L}_{2}\) are expressed as following formula:

$$\begin{aligned} \mathrm{E}[Q^{L}_{1}]= & {} \mathrm{E}[Q^{L}_{2}]=\frac{n_1(N+1)(2N+1)}{6} = \frac{N^3}{3}a + O(N^2), \end{aligned}$$
(3)
$$\begin{aligned} \text {var}[Q^{L}_{1}]= & {} \frac{n_1n_2(N+1)(2N+1)(8N+11)}{180} \nonumber \\&-\frac{n_1n_2}{180N(N-1)}r(r^2-1)(2r+1)(8r+11)\nonumber \\= & {} \frac{1}{180}ab N^5\left( 1+\frac{1}{N} \right) \left( 2+\frac{1}{N} \right) \left( 8+\frac{11}{N} \right) \nonumber \\&-\frac{ab N^5}{180(1-\frac{1}{N})}p \left( p^2-\frac{1}{N^2} \right) \left( 2p+\frac{1}{N} \right) \left( 8p+\frac{1}{N} \right) \nonumber \\= & {} \frac{4N^5}{45}ab Q^2 +O(N^4), \end{aligned}$$
(4)
$$\begin{aligned} \text {var}[Q^{L}_{1}]= & {} \frac{n_1n_2(N+1)(2N+1)(8N+11)}{180} \nonumber \\&-\frac{n_1n_2}{180N(N-1)}r(r^2-1)(2r+1)(8r+11) \nonumber \\&- \frac{n_1n_2}{3N(N-1)}r(r^2-1)(N+1)(N-r)\nonumber \\= & {} \frac{1}{180}ab N^5\left( 1+\frac{1}{N} \right) \left( 2+\frac{1}{N} \right) \left( 8+\frac{11}{N} \right) \nonumber \\&-\frac{ab N^5}{180\left( 1-\frac{1}{N}\right) }p \left( p^2-\frac{1}{N^2} \right) \left( 2p+\frac{1}{N} \right) \left( 8p+\frac{1}{N} \right) \nonumber \\&-\frac{ab N^5}{3\left( 1-\frac{1}{N}\right) }pq \left( p^2-\frac{1}{N^2} \right) \nonumber \\= & {} \frac{4N^5}{45}ab Q{'}^2 +O(N^4), \end{aligned}$$
(5)

where \(Q=\sqrt{1-p^5},\)\(Q'=\sqrt{1-\frac{15}{4}p^3q -p^5}\). Hence, the statistics \(U_L\) and \(V_L\) are given by

$$\begin{aligned} U_L= & {} \frac{Q^{L}_{1}-\text {E}[Q^{L}_{1}] }{\sqrt{\text {var}[Q^{L}_{1}]}}= \frac{q^{\frac{5}{2}}}{4Q} t + \frac{\sqrt{15}(1+p) q^{\frac{3}{2}}}{4Q}w -\frac{\sqrt{5}(1+p) p^{\frac{1}{2}} q^{\frac{1}{2}}}{2Q} \tau +O(N^{-\frac{1}{2}}), \\ V_L= & {} \frac{Q^{L}_{2}-\mathrm{E}[Q^{L}_{2}] }{\sqrt{\text {var}[Q^{L}_{2}]}} = \frac{q^{\frac{5}{2}}}{Q'} t-\frac{\sqrt{15}q^{\frac{5}{2}}}{2Q'}w -\frac{\sqrt{5}p^{\frac{1}{2}} q^{\frac{1}{2}}(4-2p-p^2)}{2Q'}\tau +O(N^{-\frac{1}{2}}). \end{aligned}$$

Note that t, w and \(\tau \) are the asymptotically normal and mutually independent. By taking into account \(\text {E}[U_L]=\text {E}[V_L]=0\), \(\text {var}[U_L]=\text {var}[V_L]=1\), the proof is completed to show for the case of the left-censored data by using Lemma 1.

1.2 Proof for the right-censored data

The equation \(R_{1j}=R^*_{1j}\) holds for the right-censored data. Define that

$$\begin{aligned} M_2 =\sum _{j=1}^{n'_1} R^{*2}_{1j} \quad \text {and} \quad t_2=\frac{M_2-\text {E}[M_2]}{\sqrt{\text {var}[M_2]}}. \end{aligned}$$

\(Q^{R}_{1}\) and \(Q^{R}_{2}\) are decomposed as follows:

$$\begin{aligned} Q^{R}_{1}= & {} \sum _{j=1}^{n'_1} R_{1j}^{2} +\frac{r_1(6N^2-6Nr+6N+2r^2-3r+1)}{6} \\= & {} \sum _{j=1}^{n'_1} R_{1j}^{*2} +\frac{r_1(6N^2-6Nr+6N+2r^2-3r+1)}{6} \\= & {} C_1+C_2\quad (\mathrm{say}), \\ Q^{R}_{2}= & {} \sum _{i=1}^{n_1} (N+1-R_{1j})^2 + \frac{r_1(r+1)(2r+1)}{6} \\= & {} \sum _{j=1}^{n_1} (N+1-R^*_{1j})^2 + \frac{r_1(r+1)(2r+1)}{6} \\= & {} \frac{r_1(r+1)(2r+1)}{6} + \sum _{j=1}^{n_1} \left( R^*_{1j} -\frac{N'+1}{2} \right) ^2 -(N+r+1) \sum _{j=1}^{n'_1} R^*_{1j} \\&+\frac{1}{4}n'_1(N+r+1)(3N-r+3) \\= & {} A_1+A_2-A_3+D_1\quad (\mathrm{say}). \end{aligned}$$

Since it is rewritten by utilizing the constants a, b, p, q and the random variables t, w, \(\tau \), we obtain

Therefore, we re-formulated \(Q^{R}_{1}\) and \(Q^{R}_{2}\) as follows:

$$\begin{aligned} Q^{R}_{1}= & {} \frac{1}{3}N^3 a + \frac{2}{3\sqrt{5}}N^{\frac{5}{2}} a^{\frac{1}{2}} b^{\frac{1}{2}} q^{\frac{5}{2}} t_2 + \frac{1}{3}N^{\frac{5}{2}} (2-p) a^{\frac{1}{2}} b^{\frac{1}{2}} p^{\frac{1}{2}} q^{\frac{1}{2}} \tau +O(N^2), \\ Q^{R}_{2}= & {} \frac{1}{3}N^3 a + \frac{1}{6\sqrt{5}}N^{\frac{5}{2}} a^{\frac{1}{2}} b^{\frac{1}{2}} q^{\frac{5}{2}} t_1 - \frac{1}{2\sqrt{3}}N^{\frac{5}{2}} (1+p)a^{\frac{1}{2}} b^{\frac{1}{2}} q^{\frac{3}{2}} w \\&- \frac{1}{3} N^{\frac{5}{2}} (1+p)a^{\frac{1}{2}} b^{\frac{1}{2}} p^{\frac{1}{2}} q^{\frac{1}{2}}\tau +O(N^2). \end{aligned}$$

By taking into account for \(\text {var}[Q_{\xi }^{R}]=\text {var}[Q_{3-\xi }^{L}]\), \(\xi =1,2\) and the Eqs. (3), (4), (5), we have

$$\begin{aligned} U_R= & {} \frac{Q^{R}_{1}-\text {E}[Q^{R}_{1}] }{\sqrt{\text {var}[Q^{R}_{1}]}} = \frac{q^{\frac{5}{2}}}{Q'} t_2 + \frac{\sqrt{5}(2-p)p^{\frac{1}{2}}q^{\frac{1}{2}}}{2Q'}\tau +O(N^{-\frac{1}{2}}), \\ V_R= & {} \frac{Q^{R}_{2}-\text {E}[Q^{R}_{2}] }{\sqrt{\text {var}[Q^{R}_{2}]}} = \frac{q^{\frac{5}{2}}}{4Q}t_1-\frac{\sqrt{15}(1+p)q^{\frac{3}{2}}}{4Q}w-\frac{\sqrt{5}(1+p)p^{\frac{1}{2}}q^{\frac{1}{2}}}{2Q}\tau +O(N^{-\frac{1}{2}}), \end{aligned}$$

where \(Q=\sqrt{1-p^5}\), \(Q'=\sqrt{1-\small {\tfrac{4}{15}}p^3q-p^5}\). It is noteworthy that \(t_2\) is asymptotically distributed according to N(0, 1) and \(t_2\) and \(\tau \) are mutually independent and \(\text {E}[U_R]=\text {E}[V_R]=0\), \(\text {var}[U_R]=\text {var}[V_R]=1\). Conclusively, the proof is completed to show for the case of the right-censored data by applying Lemma 1.

Proof of Theorem 2

The correlation coefficient between \(U_L\) (\(U_R\)) and \(V_L\) (\(V_R\)) is approximated to

where \(Q=\sqrt{1-p^5}\), \(Q'=\sqrt{1-\small {\tfrac{4}{15}}p^3q-p^5}\). Note that \(p=1-q\). Then the behavior of \(\rho \) on \(p\in (0,1)\) is as follows:

$$\begin{aligned} f(0)=-\frac{7}{8}, \quad \lim _{p\rightarrow 1-0} f(p) = -1, \quad f'(p)<0, \quad \left\{ p\in [0,1]; \ |f(p)|=0 \right\} = \phi . \end{aligned}$$

Therefore, f(p) is strictly monotonic decreasing and \(|f(p)| \ne 1\) on (0, 1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishino, T., Murakami, H. The Cucconi statistic for Type-I censored data. Metrika 82, 903–929 (2019). https://doi.org/10.1007/s00184-019-00712-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-019-00712-x

Keywords

Mathematics Subject Classification

Navigation