Skip to main content
Log in

On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this paper, we discuss the existence and uniqueness of the maximum likelihood estimates (MLEs) of the parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples. We first derive the relationship between the MLEs of the two parameters and then discuss the monotonicity property of the profile likelihood function. Numerical iterative procedure is then discussed for determining the MLEs of the parameters. Finally, for illustrative purpose, we analyze one real data from the literature and present some graphical illustrations of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold BC, Balakrishnan N, Nagaraja HN (1992) A first course in order statistics. Wiley, New York

    MATH  Google Scholar 

  • Balakrishnan N (2007) Progressive censoring methodology: an appraisal (with discussions). Test 16:211–296

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Aggarwala R (2000) Progressive censoring: theory, methods, and applications. Birkhäuser, Boston

    Book  Google Scholar 

  • Balakrishnan N, Cohen AC (1991) Order statistics and inference: estimation methods. Academic Press, San Diego

    MATH  Google Scholar 

  • Balakrishnan N, Cramer E (2014) The art of progressive censoring: applications to reliability and quality. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Balakrishnan N, Cutler CD (1996) Maximum likelihood estimation of Laplace parameters based on Type-II censored samples. In: Morrison DF, Nagaraja HN, Sen PK (eds) Statistical theory and applications: papers in honor of Herbert A. David. Springer, Berlin, pp 145–151

    Chapter  Google Scholar 

  • Balakrishnan N, Kundu D (2013) Hybrid censoring: models, inferential results and applications (with discussions). Comput Stat Data Anal 57:166–209

    Article  MATH  Google Scholar 

  • Balakrishnan N, Leiva V, Lopez J (2007) Acceptance sampling plans from truncated life tests based on the generalized Birnbaum–Saunders distribution. Commun Stat Simul Comput 36:643–656

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Zhu X (2014) On the existence and uniqueness of the maximum likelihood estimates of the parameters of Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples. Statistics 48:1013–1032

    Article  MathSciNet  MATH  Google Scholar 

  • Barreto LS, Cysneiros AHMA, Cribari-Neto F (2013) Improved Birnbaum–Saunders inference under type II censoring. Comput Stat Data Anal 57:68–81

    Article  MathSciNet  MATH  Google Scholar 

  • Barros M, Paula GA, Leiva V (2009) An R implementation for generalized Birnbaum–Saunders distributions. Comput Stat Data Anal 53:1511–1528

    Article  MathSciNet  MATH  Google Scholar 

  • Birnbaum ZW, Saunders SC (1969) A new family of life distributions. J Appl Probab 6:319–327

    Article  MathSciNet  MATH  Google Scholar 

  • Birnbaum ZW, Saunders SC (1969) Estimation for a family of life distributions with applications to fatigue. J Appl Probab 6:327–347

    Article  MathSciNet  MATH  Google Scholar 

  • Bryson MC, Siddiqui MM (1969) Some criteria for aging. J Am Stat Assoc 64:1472–1483

    Article  MathSciNet  Google Scholar 

  • Childs A, Chandrasekar B, Balakrishnan N, Kundu D (2003) Exact likelihood inference based on Type-I and Type-II hybrid censored samples from exponential distribution. Ann Inst Stat Math 55:319–330

    MathSciNet  MATH  Google Scholar 

  • Diáz-García JA, Leiva-Sánchez V (2005) A new family of life distributions based on the elliptically contoured distributions. J Stat Plan Inference 128:445–457 (Erratum, 137:1512–1513)

    Article  MathSciNet  MATH  Google Scholar 

  • Epstein B (1954) Truncated life-test in exponential case. Ann Inst Stat Math 25:555–564

    Article  MathSciNet  MATH  Google Scholar 

  • Kotz S, Kozubowski TJ, Podgórski K (2001) The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Leiva V, Riquelme M, Balakrishnan N (2008) Lifetime analysis based on the generalized Birnbaum–Saunders distribution. Comput Stat Data Anal 21:2079–2097

    Article  MathSciNet  MATH  Google Scholar 

  • Lemonte AJ, Ferrari SL (2011) Testing hypotheses in the Birnbaum–Saunders distribution under Type-II censored samples. Comput Stat Data Anal 55:2388–2399

    Article  MathSciNet  MATH  Google Scholar 

  • Ng HKT, Kundu D, Balakrishnan N (2003) Modified moment estimation for the two-parameter Birnbaum–Saunders distribution. Comput Stat Data Anal 43:283–298

    Article  MathSciNet  MATH  Google Scholar 

  • Ng HKT, Kundu D, Balakrishnan N (2006) Point and interval estimation for the two-parameter Birnbaum–Saunders distribution based on Type-II censored samples. Comput Stat Data Anal 50:3222–3242

    Article  MathSciNet  MATH  Google Scholar 

  • Sanhueza A, Leiva V, Balakrishnan N (2008) The generalized Birnbaum–Saunders distribution and its theory, methodology, and application. Commun Stat Theory Methods 37:645–670

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu X, Balakrishnan N (2015) Birnbaum–Saunders distribution based on Laplace kernel and some properties and inferential issues. Stat Probab Lett 101:1–10

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the anonymous reviewers for their useful comments and suggestion on an earlier version of this manuscript which led to this improved version.

Funding

This research was supported by the National Natural Science Foundation of China—Young Scientists Fund [No. 11801459], Jiangsu Science and Technology Programme—The Young-Scholar Programme [No. BK20180241] and the Research Development Fund of Xian-Jiaotong Liverpool University [No. RDF-17-01-20]. The second author thanks the Natural Sciences and Engineering Research Council of Canada for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Remark 1

It is clear that \(\alpha (\beta ,t_{k:n},k)\) in (12), for \(\beta \le t_{k:n}\), is not differentiable at \(\beta =t_{i:n}\), for \(i=1,\ldots ,k\). However, it is continuous, and so we can consider \(\alpha (\beta ,t_{k:n},k)\) reaches the local maximum or local minimum at t if \(\lim \nolimits _{x\rightarrow t^+} \alpha '(x,t_{k:n},k)\lim \nolimits _{x\rightarrow t^-}\alpha '(x,t_{k:n},k)<0\). For the sake of convenience, we define \(\alpha '(x,t_{k:n},k)=0\) if \(\lim \nolimits _{x\rightarrow t^+} \alpha '(x,t_{k:n},k)\lim \nolimits _{x\rightarrow t^-}\alpha '(x,t_{k:n},k)<0\). Now, if \(t_{j:n}<\beta <t_{j+1:n}\), \(j=0,\ldots ,k-1,\) with \(t_{0:n}\equiv 0\), then the first derivative of \(\alpha \) with respect to \(\beta \) is given by

$$\begin{aligned} \alpha '(\beta ,t_{k:n},k)&=\frac{1}{2k\beta }\left[ \sum _{i=1}^j y_i(\beta ) -\sum _{i=j+1}^k y_i(\beta )- (n-k)S(\beta ,t_{k:n})\right] . \end{aligned}$$

It is clear that when \(\beta \rightarrow 0\), we have \(j=0\) and so

$$\begin{aligned}\lim \limits _{\beta \rightarrow 0} \alpha '(\beta ,t_{k:n},k)<0.\end{aligned}$$

We also have

$$\begin{aligned}\lim \limits _{\beta \rightarrow t_{k:n}^{-1}} \alpha '(\beta , t_{k:n}, k)= \frac{1}{2kt_{k:n}}\left\{ \sum _{i=1}^{k-1}\left[ \left( \frac{t_{k:n}}{t_{i:n}}\right) ^{\frac{1}{2}} +\left( \frac{t_{i:n}}{t_{k:n}}\right) ^{\frac{1}{2}}\right] - 2(n-k+1)\right\} \end{aligned}$$

and

$$\begin{aligned} {[}\beta \alpha '(\beta ,t_{k:n},k)]'=\frac{\alpha (\beta ,t_{k:n},k)}{4\beta }>0, \end{aligned}$$

which suggests that there exists at most one root for \([\beta \alpha '(\beta ,t_{k:n},k)]=0\), thus showing that there exists at most one root for \(\alpha '(\beta ,t_{k:n},k)=0\) in turn. We can thus conclude the lemma, as required. \(\square \)

Proof of Lemma 1

Let us consider the first derivative of \(\ln L_{profile}\) with respect to \(\beta \) in each interval \((t_{j:n} , t_{j+1:n})\), for \(j=0,\ldots , k-1\), with \(t_0\equiv 0\), given by

$$\begin{aligned} \ln L'_{pro}=-\frac{k \alpha '(\beta ,t_{k:n},k)}{\alpha (\beta ,t_{k:n},k)} +\sum \limits _{i=1}^k\frac{\beta -t_{i:n}}{2\beta (\beta +t_{i:n})}=\frac{\gamma (\beta )}{\beta ^2\alpha (\beta ,t_{k:n},k)}, \end{aligned}$$

where \(\gamma (\beta )=-\beta ^2 k\alpha '(\beta ,t_{k:n},k)+\beta \alpha (\beta ,t_{k:n},k)\sum \nolimits _{i=1}^k\frac{\beta -t_{i:n}}{2(\beta +t_{i:n})}\).

Moreover, we have

$$\begin{aligned} \lim _{\beta \rightarrow 0}\ln L'_{pro}&= \lim _{\beta \rightarrow 0}\left\{ \frac{k}{\beta }\frac{\sum \nolimits _{i=1}^k\left( \frac{\beta }{t_{i:n}}\right) ^\frac{1}{2}+(n-k)\left( \frac{\beta }{t_{k:n}}\right) ^\frac{1}{2}}{\sum \nolimits _{i=1}^k\left[ \left( \frac{t_{i:n}}{\beta }\right) ^{\frac{1}{2}}-\left( \frac{\beta }{t_{i:n}}\right) ^{\frac{1}{2}}\right] +(n-k)\left[ \left( \frac{t_{k:n}}{\beta }\right) ^{\frac{1}{2}}-\left( \frac{\beta }{t_{k:n}}\right) ^{\frac{1}{2}}\right] }\right. \\&\quad \left. +\sum _{i=1}^k\frac{1}{\beta +t_{i:n}}\right\} >0,\\ \lim _{\beta \rightarrow t_{k:n}^-}\ln L'_{pro}&= - \frac{k}{t_{k:n}}\frac{\sum \nolimits _{i=1}^{k-1}\left( \frac{t_{i:n}}{t_{k:n}}\right) ^\frac{1}{2}-(n-k+1)}{\sum \nolimits _{i=1}^{k-1}\left[ \left( \frac{t_{k:n}}{t_{i:n}}\right) ^{\frac{1}{2}}-\left( \frac{t_{i:n}}{t_{k:n}}\right) ^{\frac{1}{2}}\right] } -\frac{1}{t_{k:n}}\sum _{i=1}^k\frac{t_{i:n}}{t_{k:n}+t_{i:n}}\\&=-\frac{C_1(t_{k:n},k)}{t_{k:n}}. \end{aligned}$$

Thus, if \(\lim _{\beta \rightarrow t_{k:n}^-}\ln L'_{pro}<0\), then there must exist a \(\beta _0\) such that \(\gamma (\beta )>0\) for \(\beta <\beta _0\) and \(\gamma (\beta )<0\) for \(\beta >\beta _0\). We show in the following once \(\gamma (\beta )<0\), then \(\gamma (\beta )\) will be a decreasing function of \(\beta \), which in turn suggests that there will be no root for \(\gamma (\beta )=0\) for \(\beta >\beta _0\). The first derivative of \(\gamma (\beta )\) is

$$\begin{aligned} \gamma '(\beta )=&-\left[ k\beta \alpha '(\beta ,t_{k:n},k)+\frac{k\alpha (\beta ,t_{k:n},k)}{4}\right] \\&+\left[ \left( \alpha (\beta ,t_{k:n},k)+\beta \alpha '(\beta ,t_{k:n},k)\right) \sum \limits _{i=1}^k\frac{\beta -t_{i:n}}{2(\beta +t_{i:n})}\right. \\&\left. +\beta \alpha (\beta ,t_{k:n},k)\sum _{i=1}^k\frac{t_{i:n}}{(t_{i:n}+\beta )^2}\right] \\ =&-\alpha '(\beta ,t_{k:n},k)\beta \sum _{i=1}^k\frac{\beta +3t_{i:n}}{2(\beta +t_{i:n})}+ \alpha (\beta ,t_{k:n},k)\sum _{i=1}^k\frac{(\beta -t_{i:n})(\beta +3t_{i:n})}{4(t_{i:n}+\beta )^2}\\ =&-\alpha '(\beta ,t_{k:n},k)\beta \sum _{i=1}^k\frac{\beta +3t_{i:n}}{2(\beta +t_{i:n})} +\alpha (\beta ,t_{k:n},k)\\&\times \left[ \frac{1}{k}\sum _{i=1}^k\frac{\beta +3t_{i:n}}{2(\beta +t_{i:n})}\sum _{i=1}^k\frac{\beta -t_{i:n}}{2(\beta +t_{i:n})} \right. \\&\left. -\sum _{i=1}^k\left( \frac{t_{i:n}}{t_{i:n}+\beta }\right) ^2 +\frac{1}{k}\left( \sum _{i=1}^k\frac{t_{i:n}}{t_{i:n}+\beta }\right) ^2\right] \\ =&\frac{\gamma (\beta )}{k\beta }\sum _{i=1}^k\frac{\beta +3t_i}{2(\beta +t_i)}\\&-\frac{\alpha (\beta ,t_{k:n},k)}{k}\left[ k\sum _{i=1}^k\left( \frac{t_i}{t_i+\beta }\right) ^2-\left( \sum _{i=1}^k\frac{t_i}{t_i+\beta }\right) ^2\right] <0.\\ \end{aligned}$$

Moreover, for any non-differentiable point \(t_{j:n}\) for \(j=1,\ldots ,k-1\), we have

$$\begin{aligned}&\lim \limits _{\beta \rightarrow t_{j:n}^-}\ln L'_{pro}-\lim \limits _{\beta \rightarrow t_{j:n}^+}\ln L'_{pro}\\&\quad =\frac{k\left( \lim \limits _{\beta \rightarrow t_{j:n}^+}\alpha '(\beta ,t_{k:n},k)-\lim \limits _{\beta \rightarrow t_{j:n}^-}\alpha '(\beta ,t_{k:n},k)\right) }{\alpha (t_{j:n},t_{k:n},k)}>0. \end{aligned}$$

We can thus conclude that if \(\lim \nolimits _{\beta \rightarrow t_{k:n}}\ln L'_{pro}<0\), then there exists only one root for the equation \(\ln L'_{pro}(\beta )=0\) for \(\beta \le t_{k:n}\), and if \(\lim \nolimits _{\beta \rightarrow t_{k:n}}\ln L'_{pro}>0\), then there will be no root for the equation \(\ln L'_{pro}(\beta )=0\) for \(\beta \le t_{k:n}\). \(\square \)

Proof of Lemma 3

We will first prove that \(H(\eta (\beta ,t_{k:n}))\) is a decreasing function of \(\beta \) for \(\beta >t_{k:n}\). It is well-known that the hazard function of the standard Laplace distribution is an increasing function of x for \(x<0\) and a constant for \(x\ge 0\). Studying the monotonicity of \(H(\eta (\beta ,t_{k:n}))\) is equivalent to studying the property of \(\eta (\beta ,t_{k:n})\), where

$$\begin{aligned} \eta (\beta ,t_{k:n})=-\frac{S(\beta ,t_{k:n})}{\alpha (\beta ,t_{k:n},k)} = -\frac{\left( \sqrt{\frac{\beta ^2}{t_{k:n}}}-\sqrt{t_{k:n}}\right) \left( {\sum \limits _{i=1}^k\frac{t_{k:n}+t_{i:n}}{t_{i:n}+\beta }}\right) }{\sum \limits _{i=1}^k\left( \sqrt{\frac{t_{k:n}^2}{t_{i:n}}}-\sqrt{t_{i:n}}\right) }. \end{aligned}$$

Let us denote \(g_1(\beta )=\left( \sqrt{\frac{\beta ^2}{t_{k:n}}}-\sqrt{t_{k:n}}\right) \left( {\sum \limits _{i=1}^k\frac{t_{k:n}+t_{i:n}}{t_{i:n}+\beta }}\right) \); we then have

$$\begin{aligned} g_1'(\beta )= & {} \sqrt{\frac{1}{t_{k:n}}} \left( {\sum \limits _{i=1}^k\frac{t_{k:n}+t_{i:n}}{t_{i:n}+\beta }}\right) -\left( \sqrt{\frac{\beta ^2}{t_{k:n}}}-\sqrt{t_{k:n}}\right) \left( {\sum \limits _{i=1}^k\frac{t_{k:n}+t_{i:n}}{(t_{i:n}+\beta )^2}}\right) \\> & {} \sqrt{\frac{1}{t_{k:n}}} \left( {\sum \limits _{i=1}^k\frac{t_{k:n}+t_{i:n}}{t_{i:n}+\beta }}\right) -\left( \sqrt{\frac{\beta ^2}{t_{k:n}}}-\sqrt{t_{k:n}}\right) \left( {\sum \limits _{i=1}^k\frac{t_{k:n}+t_{i:n}}{(t_{i:n}+\beta )\beta }}\right) >0. \end{aligned}$$

Hence, \(\eta (\beta ,t_{k:n})\) is a decreasing function of \(\beta \).

Next, we will prove that \(\alpha (\beta ,t_{k:n},k)\sqrt{\beta }\sum \nolimits _{i=1}^k\frac{t_{i:n}}{t_{i:n}+\beta }=g_2(\beta )\) is an increasing function of \(\beta \) for \(\beta >t_{k:n}\), where

$$\begin{aligned} g_2(\beta )=\sum \limits _{i=1}^k\left( \sqrt{\frac{t_{k:n}^2}{t_{i:n}}}-\sqrt{t_{i:n}}\right) \frac{\sum _{i=1}^k\frac{t_{i:n}}{t_{i:n}+\beta }}{\sum _{i=1}^k\frac{t_{k:n}+t_{i:n}}{t_{i:n}+\beta }}. \end{aligned}$$

Let us consider

$$\begin{aligned} g_3(\beta )=\frac{\sum _{i=1}^k\frac{t_{i:n}}{t_{i:n}+\beta }}{\sum _{i=1}^k\frac{t_{k:n}+t_{i:n}}{t_{i:n}+\beta }}; \end{aligned}$$

then, we have

$$\begin{aligned} g_3'(\beta )= & {} \frac{-\sum _{i=1}^k\frac{t_{i:n}}{(t_{i:n}+\beta )^2}\sum _{i=1}^k\frac{t_{k:n}}{(t_{i:n}+\beta )} +\sum _{i=1}^k\frac{t_{k:n}}{(t_{i:n}+\beta )^2}\sum _{i=1}^k\frac{t_{i:n}}{(t_{i:n}+\beta )}}{\left( \sum _{i=1}^k\frac{t_{k:n}+t_{i:n}}{t_{i:n}+\beta }\right) ^2}\\= & {} \frac{t_{k:n}\left[ k\sum _{i=1}^k\frac{1}{(t_{i:n}+\beta )^2}-\left( \sum _{i=1}^k\frac{1}{t_{i:n}+\beta }\right) ^2\right] }{\left( \sum _{i=1}^k\frac{t_{k:n}+t_{i:n}}{t_{i:n}+\beta }\right) ^2}>0, \end{aligned}$$

showing the monotonicity of \(g_2(\beta )\) and then \(G(\beta )\) in turn.

Moreover, we have

$$\begin{aligned} \lim \limits _{\beta \rightarrow t_{k:n}^+}G(\beta )= & {} - \frac{\sqrt{t_{k:n}}}{k} \sum \limits _{i=1}^k\left( \sqrt{\frac{t_{k:n}}{t_{i:n}}}-\sqrt{\frac{t_{i:n}}{t_{k:n}}}\right) \sum \limits _{i=1}^k\frac{t_{i:n}}{t_{i:n}+t_{k:n}}\\&-\sum \limits _{i=1}^k\sqrt{t_{i:n}}+(n-k)\sqrt{t_{k:n}}\\= & {} - \frac{\sqrt{t_{k:n}}}{k} \sum \limits _{i=1}^k\left( \sqrt{\frac{t_{k:n}}{t_{i:n}}}-\sqrt{\frac{t_{i:n}}{t_{k:n}}}\right) \\&\times \left[ \sum \limits _{i=1}^k\frac{t_{i:n}}{t_{i:n}+t_{k:n}} +k\frac{\sum \limits _{i=1}^k\sqrt{\frac{t_{i:n}}{t_{k:n}}}-(n-k)}{\sum \limits _{i=1}^k\left( \sqrt{\frac{t_{k:n}}{t_{i:n}}}-\sqrt{\frac{t_{i:n}}{t_{k:n}}}\right) }\right] \\= & {} - \frac{\sqrt{t_{k:n}}}{k} \sum \limits _{i=1}^k\left( \sqrt{\frac{t_{k:n}}{t_{i:n}}}-\sqrt{\frac{t_{i:n}}{t_{k:n}}}\right) C_2(t_{k:n},k),\\ \lim \limits _{\beta \rightarrow \infty }G(\beta )= & {} -\sqrt{t_{k:n}} \sum \limits _{i=1}^k\left( \sqrt{\frac{t_{k:n}}{t_{i:n}}}-\sqrt{\frac{t_{i:n}}{t_{k:n}}}\right) \\&\times \left[ \frac{\sum \limits _{i=1}^kt_{i:n}}{\sum \limits _{i=1}^k(t_{i:n}+t_{k:n})} +\frac{\sum \limits _{i=1}^k\sqrt{\frac{t_{i:n}}{t_{k:n}}}-(n-k)(\eta (\infty ,t_{k:n}))}{\sum \limits _{i=1}^k\left( \sqrt{\frac{t_{k:n}}{t_{i:n}}}-\sqrt{\frac{t_{i:n}}{t_{k:n}}}\right) }\right] \\= & {} -\sqrt{t_{k:n}} \sum \limits _{i=1}^k\left( \sqrt{\frac{t_{k:n}}{t_{i:n}}}-\sqrt{\frac{t_{i:n}}{t_{k:n}}}\right) C_3(t_{k:n},k). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Balakrishnan, N. & Saulo, H. On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples. Metrika 82, 759–778 (2019). https://doi.org/10.1007/s00184-019-00707-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-019-00707-8

Keywords

Mathematics Subject Classification

Navigation