Skip to main content
Log in

Nonparametric independence feature screening for ultrahigh-dimensional survival data

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

With the explosion of digital information, high-dimensional data is frequently collected in prevalent domains, in which the dimension of covariates can be much larger than the sample size. Many effective methods have been developed to reduce the dimension of such data recently, however, few methods might perform well for survival data with censoring. In this article, we develop a novel nonparametric feature screening procedure based on ultrahigh-dimensional survival data by incorporating the inverse probability weighting scheme to tackle the issue of censoring. The proposed method is model-free and hence can be implemented for extensive survival models. Moreover, it is robust to heterogeneity and invariant to monotone increasing transformations of the response. The sure screening property and ranking consistency property are also established under mild conditions. The competence and robustness of our method is further confirmed through comprehensive simulation studies and an analysis of a real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bair E, Tibshirani R (2004) Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol 2:511–522

    Article  Google Scholar 

  • Barut E, Fan J, Verhasselt A (2016) Conditional sure independence screening. J Am Stat Assoc 111:1266–1277

    Article  MathSciNet  Google Scholar 

  • Bitouzé D, Laurent B, Massart P (1999) A Dvoretzky–Kiefer–Wolfowitz type inequality for the Kaplan–Meier estimator. Annales de I’Institut Henri Poincaré 35:735–763

    Article  MathSciNet  MATH  Google Scholar 

  • Cox DR (1972) Regression models and life-tables (with discussion). J R Stat Soci Ser B 34:187–220

    MATH  Google Scholar 

  • Dabrowska DM, Doksum KA (1988) Estimation and testing in a two-sample generalized odds-rate model. J Am Stat Assoc 83:744–749

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Li R (2002) Variable selection for Cox’s proportional hazards model and frailty model. Ann Stat 30:74–99

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Lv J (2008) Sure independence screening for ultrahigh dimensional feature space (with disscussion). J R Stat Soc Ser B 70:849–911

    Article  MathSciNet  Google Scholar 

  • Fan J, Song R (2010) Sure Independence screening for in generalized linear models with NP-dimensionality. Ann Stat 38:3567–3604

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Samworth R, Wu Y (2009) Ultrahigh dimensional feature selection: beyond the linear model. J Mach Learn Res 10:2013–2038

    MathSciNet  MATH  Google Scholar 

  • Fan J, Feng Y, Wu Y (2010) High-dimensional variable selection for Cox’s proportional hazards. Borrow Strength Theory Power Appl A Festschr Lawrence D. Brown 6:70–86

    Google Scholar 

  • Fan J, Feng Y, Song R (2011) Nonparametric independence screening in sparse ultra-high dimensional additive models. J Am Stat Assoc 106:544–557

    Article  MathSciNet  MATH  Google Scholar 

  • Fan J, Ma Y, Dai W (2014) Nonparametric independence screening in sparse ultra-high dimensional varying coefficient models. J Am Stat Assoc 109:1270–1284

    Article  MathSciNet  MATH  Google Scholar 

  • Gorst-Rasmussen A, Scheike T (2013) Independent screening for single-index hazard rate models with ultra-high-dimensional dimensional features. J R Stat Soc Ser B 75:217–245

    Article  MathSciNet  Google Scholar 

  • He X, Wang L, Hong HG (2013) Quantile-adaptive model-free variable screening for high-dimensional heterogeneous data. Ann Stat 41:342–369

    Article  MathSciNet  MATH  Google Scholar 

  • Hong HG, Kang J, Li Y (2018) Conditional screening for ultra-high dimensional covariates with survival outcomes. Lifetime data analysis 24:45–71

    Article  MathSciNet  MATH  Google Scholar 

  • Huang J, Horowitz JL, Ma S (2008) Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann Stat 36:587–613

    Article  MathSciNet  MATH  Google Scholar 

  • Jin J, Zhang CH, Zhang Q (2014) Optimality of graphlet screening in high dimensional variable selection. J Mach Learn Res 15:2723–2772

    MathSciNet  MATH  Google Scholar 

  • Kendall MG (1962) Rank correlation methods, 3rd edn. Griffin & Co, London

    Google Scholar 

  • Li R, Zhong W, Zhu LP (2012) Feature screening via distance correlation learning. J Am Stat Assoc 107:1129–1139

    Article  MathSciNet  MATH  Google Scholar 

  • Lin HZ, Peng H (2013) Smoothed rank correlation of the linear transformation regression model. Comput Stat Data Anal 57:615–630

    Article  MathSciNet  MATH  Google Scholar 

  • Li G, Peng H, Zhang J, Zhu LX (2012) Robust rank correlation based screening. Ann Stat 40:1846–1877

    Article  MathSciNet  MATH  Google Scholar 

  • Lu W, Zhang HH (2007) Variable selection for proportional odds model. Stat Med 26:3771–3781

    Article  MathSciNet  Google Scholar 

  • Ma S, Li R, Tsai CL (2017) Variable screening via quantile partial correlation. J Am Stat Assoc 112:650–663

    Article  MathSciNet  Google Scholar 

  • Peng L, Fine J (2009) Competing risks quantile regression. J Am Stat Assoc 104:1440–1453

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenwald A, Wright G, Chan WC, Connors JM, Hermelink HK, Smeland EB, Staudt LM (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346:1937–1947

    Article  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Shi P, Qu A (2017) Weak signal identification and inference in penalized model selection. Ann Stat 45:1214–1253

    Article  MathSciNet  MATH  Google Scholar 

  • Song R, Lu W, Ma S, Jeng XJ (2014) Censored rank independence screening for high-dimensional survival data. Biometrika 101:799–814

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani RJ (1997) The lasso method for variable selection in the Cox model. Stat Med 16:385–395

    Article  Google Scholar 

  • Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ (2011) On the Cstatistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med 30:1105–1117

    MathSciNet  Google Scholar 

  • Wu Y, Yin G (2015) Conditional quantile screening in ultrahigh-dimensional heterogeneous data. Biometrika 102:65–76

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng D, Lin DY (2007) Maximum likelihood estimation in semiparametric regression models with censored data. J R Stat Soc Ser B 69:507–564

    Article  MathSciNet  Google Scholar 

  • Zhang J, Liu Y, Wu Y (2017) Correlation rank screening for ultrahigh-dimensional survival data. Comput Stat Data Anal 2017:121–132

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao SD, Li Y (2012) Principled sure independence screening for Cox models with ultra-high-dimensional covariates. J Multivar Anal 105:397–4114

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou T, Zhu LP (2017) Model-free feature screening for ultrahigh dimensional censored regression. Stat Comput 27:947–961

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu LP, Li L, Li R, Zhu LX (2011) Model-free feature screening for ultrahigh dimensional data. J Am Stat Assoc 106:1464–1475

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the Editor, an Associate Editor and the anonymous reviewers for their constructive suggestions, which have helped greatly improve our paper. Pan’s work was supported by Graduate Innovation Foundation of Shanghai University of Finance and Economics of China (CXJJ-2015-448). Zhou’s work was supported by the State Key Program of National Natural Science Foundation of China (71331006), the State Key Program in the Major Research Plan of National Natural Science Foundation of China (91546202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Pan.

Appendices

Appendix A

Lemma 1

(Bitouzé et al. 1999, Theorem 1) Let \(\{X_i\}_{i=1}^n\) and \(\{Y_i\}_{i=1}^n\) be independent sequences of independent identically distributed nonnegative random variables with distribution functions \(F(\cdot )\) and \(G(\cdot )\). Let \(\widehat{F}_{n}\) be the Kaplan–Meier estimator of \(F(\cdot )\). There exists a constant \(M>0\), for any \(\lambda >0\), such that

$$\begin{aligned} Pr\left( \sqrt{n}\Vert (1-G)(\widehat{F}_n-F)\Vert _{\infty }>\lambda \right) \le 2.5\exp \{-2\lambda ^2+M\lambda \}. \end{aligned}$$

Lemma 2

(Serfling 1980, P201, Theorem B) Let \(h = h(X_1,X_2,\ldots ,X_m)\) be the kernel of the U-statistic, \(\theta = \theta (F)\), with \(E\exp \left\{ sh(X_1,X_2,\ldots ,X_m)\right\} <\infty \), \(0<s<s_0\). For any \(\varepsilon >o\), when \(n>m\), there exist \(c_1>0\) and \(0<\rho <1\) such that

$$\begin{aligned} Pr(U_n-\theta \ge \varepsilon )\le c_1\rho ^n. \end{aligned}$$

Lemma 3

Under Condition (C1), for any \(c_2 >0\), when \(n \ge M^2c_3^{-1}\), where \(\delta >0\) and \(c_3 = \frac{1}{9}(\frac{c_2}{1+c_2})^2\delta ^8\),

$$\begin{aligned} Pr\left( \max _{i,j,l}\left| \frac{K(Y_i)K(Y_j)K(Y_l)}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}-1\right| \ge c_2\right) \le 2.5n^3\exp \left\{ -c_3n\right\} . \end{aligned}$$

Proof of Lemma 3

For any x, \(y>0\), taking \(a_1=\frac{c_2}{1+c_2}\), i.e., \(a_1\in (0,1)\), it is easy to show that

$$\begin{aligned} |x^{-1}-y^{-1}|\ge c_2y^{-1} \Rightarrow |x-y|\ge a_1y. \end{aligned}$$

Let \(S(t)= 1- F(t)= Pr(T> t)\). Condition (C1) implies that there exist a constant \(\delta >0\), such that \(\delta \le S(Y_i) \le 1\), \(\delta \le K(Y_i) \le 1\) and \(0\le \widehat{K}(Y_i)\le 1\) for \(i = 1, 2, \ldots , n\), therefore by Lemma 1, it follows that

$$\begin{aligned}&Pr\left( \left| \frac{K(Y_i)K(Y_j)K(Y_l)}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}-1\right| \ge c_2\right) \\&\quad \le Pr\left( |\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)-K(Y_i)K(Y_j)K(Y_l)|\ge a_1K(Y_i)K(Y_j)K(Y_l)\right) \\&\quad \le Pr\left( \widehat{K}(Y_i)\widehat{K}(Y_j)|\widehat{K}(Y_l)-K(Y_l)|+ \widehat{K}(Y_i)K(Y_l)|\widehat{K}(Y_j)-K(Y_j)|\right. \\&\qquad \left. + \, K(Y_j)K(Y_l)|\widehat{K}(Y_i)-K(Y_i)|\ge a_1\delta ^3\right) \\&\quad \le Pr\left( 3\Vert \widehat{K}-K\Vert _{\infty }\ge a_1\delta ^3\right) \le Pr\left( \sqrt{n}\Vert (1-F)(\widehat{K}-K)\Vert _{\infty }\ge \sqrt{n}\frac{a_1\delta ^4}{3}\right) \\&\quad \le 2.5 \exp \left\{ -2n\left( \frac{a_1\delta ^4}{3}\right) ^2+M\sqrt{n}\frac{a_1\delta ^4}{3}\right\} , \end{aligned}$$

where \(\Vert \cdot \Vert _{\infty }\) is the \(L_{\infty }\) norm. When \(n(\frac{a_1\delta ^4}{3})^2 \ge M\sqrt{n}\frac{a_1\delta ^4}{3}\), i.e. \(n\ge M^2(\frac{a_1\delta ^4}{3})^{-2}\), taking \(c_3 = (\frac{a_1\delta ^4}{3})^{2}=\frac{1}{9}(\frac{c_2}{c_2+1})^2\delta ^8\), we have

$$\begin{aligned} Pr\left( \max _{i,j,l}\left| \frac{K(Y_i)K(Y_j)K(Y_l)}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}-1\right| \ge c_2\right) \le 2.5n^3\exp \left\{ -c_3n\right\} . \end{aligned}$$

\(\square \)

Lemma 4

Under Condition (C1), for any \(c_4 >0\), when \(n \ge M^2c_5^{-1}\), where \(c_5 = \frac{1}{9}(\frac{c_4}{1+c_4})^2\delta ^8\),

$$\begin{aligned} Pr\left( \max _{i,j}\left| \frac{K^2(Y_i)K(Y_j)}{\widehat{K}^2(Y_i)\widehat{K}(Y_j)}-1\right| \ge c_4\right) \le 2.5n^2\exp \left\{ -c_5n\right\} . \end{aligned}$$

Proof of Lemma 4

Similar to Lemma 3, taking \(a_2=c_4/(1+c_4)\), i.e., \(a_2\in (0,1)\), it follows that

$$\begin{aligned}&Pr\left( \left| \frac{K^2(Y_i)K(Y_j)}{\widehat{K}^2(Y_i)\widehat{K}(Y_j)}-1\right| \ge c_4\right) \\&\quad \le Pr\left( \left| \widehat{K}^2(Y_i)\widehat{K}(Y_j) - K^2(Y_i)K(Y_j)\right| \ge a_2K^2(Y_i)K(Y_j)\right) \\&\quad \le Pr\left( \widehat{K}(Y_j)|\widehat{K}^2(Y_i)-K^2(Y_i)|+ K^2(Y_i)|\widehat{K}(Y_j)-K(Y_j)|\ge a_2\delta ^3\right) \\&\quad \le Pr\left( 3\Vert \widehat{K} - K\Vert _{\infty }\ge a_2\delta ^3\right) \le Pr\left( \sqrt{n}\Vert (1-F)(\widehat{K} - K)\Vert _{\infty }\ge \sqrt{n}\frac{a_2\delta ^4}{3} \right) \\&\quad \le 2.5 \exp \left\{ -2n\left( \frac{a_2\delta ^4}{3}\right) ^2+M\sqrt{n}\frac{a_2\delta ^4}{3}\right\} . \end{aligned}$$

When \(n(\frac{a_2\delta ^4}{3})^2 \ge M\sqrt{n}\frac{a_2\delta ^4}{3}\), i.e. \(n\ge M^2(\frac{a_2\delta ^4}{3})^{-2}\), taking \(c_5 = (\frac{a_2\delta ^4}{3})^{2}=\frac{1}{9}(\frac{c_4}{c_4+1})^2\delta ^8\), we have

$$\begin{aligned} Pr\left( \max _{i,j}\left| \frac{K^2(Y_i)K(Y_j)}{\widehat{K}^2(Y_i)\widehat{K}(Y_j)}-1\right| \ge c_4\right) \le 2.5n^2\exp \left\{ -c_5n\right\} . \end{aligned}$$

\(\square \)

Proof of Theorem 1

We now proof the first statement. To start with, rewrite

$$\begin{aligned} \widehat{\omega }_k&= \frac{2}{n(n-1)(n-2)}\sum _{j< i< l}^{n}\frac{\varDelta _i\varDelta _j\varDelta _l}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}\left\{ X_{jk}X_{ik}I(Y_j<Y_l)I(Y_i<Y_l) \right. \\&\quad +\,\left. X_{lk}X_{ik}I(Y_l<Y_j)I(Y_i<Y_j)+ X_{jk}X_{lk}I(Y_j<Y_i)I(Y_l<Y_i)\right\} \\&\quad +\,\frac{1}{n(n-1)(n-2)}\sum _{i\ne j}^{n}\frac{\varDelta _i\varDelta _j}{\widehat{K}^2(Y_i)\widehat{K}(Y_j)}X_{ik}^2I(Y_i<Y_j) \\&\triangleq \widehat{\omega }_{k1} + \frac{1}{n-2}\widehat{\omega }_{k2}. \end{aligned}$$

Thus,

$$\begin{aligned} \left| \widehat{\omega }_k - \omega _k \right| \le \left| \widehat{\omega }_{k1} - \omega _k\right| + \left| \frac{1}{n-2}\widehat{\omega }_{k2}\right| \triangleq |I_{k1}| + |I_{k2}|. \end{aligned}$$
(9)

For \(I_{k1}\), denote

$$\begin{aligned} \widehat{\omega }_{k1} = U_n\left[ \frac{\varDelta _i\varDelta _j\varDelta _l}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}X_{ik}X_{jk}I(Y_i<Y_l)I(Y_j<Y_l)\right] \triangleq U_nf_1(W_i,W_j,W_l), \end{aligned}$$

where

$$\begin{aligned}&U_nf_1(W_i,W_j,W_l)\\&\quad = \left( C_{n}^{3}\right) ^{-1}\sum _{i<j<l}\frac{1}{3}\left[ f_1(W_i,W_j,W_l)+f_1(W_i,W_l,W_j)+f_1(W_l,W_j,W_i)\right] . \end{aligned}$$

We can prove that

$$\begin{aligned}&E\left[ \frac{\varDelta _i\varDelta _j\varDelta _l}{K(Y_i)K(Y_j)K(Y_l)}X_{ik}X_{jk}I(Y_i<Y_l)I(Y_j<Y_l)\right] \\&\quad = E\left\{ E\left[ \frac{\varDelta _i\varDelta _j\varDelta _l}{K(Y_i)K(Y_j)K(Y_l)}X_{ik}X_{jk}I(Y_i<Y_l)I(Y_j<Y_l)|T_i,T_j,T_l\right] \right\} \\&\quad = E\left[ X_{ik}X_{jk}I(T_i<T_l)I(T_j<T_l)\right] =E\left\{ E\left[ X_{ik}X_{jk}I(T_i<T_l)I(T_j<T_l)|T_l\right] \right\} \\&\quad = E\left\{ E^2\left[ X_{ik}I(T_i<T_l)|T_l\right] \right\} = \omega _k. \end{aligned}$$

Then,

$$\begin{aligned}&\widehat{\omega }_{k1}-\omega _{k} \\&\quad = U_n\left[ \left( \frac{K(Y_i)K(Y_j)K(Y_l)}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}-1\right) \right. \\&\qquad \times \,\left. \frac{\varDelta _i\varDelta _j\varDelta _l}{K(Y_i)K(Y_j)K(Y_l)}X_{ik}X_{jk}I(Y_i<Y_l)I(Y_j<Y_l)\right] \\&\qquad +\,(U_n-E)\left[ \frac{\varDelta _i\varDelta _j\varDelta _l}{K(Y_i)K(Y_j)K(Y_l)}X_{ik}X_{jk}I(Y_i<Y_l)I(Y_j<Y_l)\right] \\&\quad \triangleq J_{k1}+J_{k2}. \end{aligned}$$

For \(J_{k1}\),

$$\begin{aligned} |J_{k1}|\le & {} \max _{i,j,l}\left| \frac{K(Y_i)K(Y_j)K(Y_l)}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}-1\right| \\&\times \, U_n\left[ \frac{\varDelta _i\varDelta _j\varDelta _l}{K(Y_i)K(Y_j)K(Y_l)}|X_{ik}||X_{jk}|I(Y_i<Y_l)I(Y_j<Y_l)\right] \\\le & {} \max _{i,j,l}\left| \frac{K(Y_i)K(Y_j)K(Y_l)}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}-1\right| \\&\times \, \left| (U_n-E)\left[ \frac{\varDelta _i\varDelta _j\varDelta _l}{K(Y_i)K(Y_j)K(Y_l)}|X_{ik}X_{jk}|I(Y_i<Y_l)I(Y_j<Y_l)\right] \right| \\&+\,\max _{i,j,l}\left| \frac{K(Y_i)K(Y_j)K(Y_l)}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}-1\right| \\&\times \, \left| E\left[ \frac{\varDelta _i\varDelta _j\varDelta _l}{K(Y_i)K(Y_j)K(Y_l)}|X_{ik}X_{jk}|I(Y_i<Y_l)I(Y_j<Y_l)\right] \right| \\&\triangleq J_{k11}+J_{k12}. \end{aligned}$$

Let

$$\begin{aligned} f_2(W_i,W_j,W_l)=\frac{\varDelta _i\varDelta _j\varDelta _l}{K(Y_i)K(Y_j)K(Y_l)}|X_{ik}||X_{jk}|I(Y_i<Y_l)I(Y_j<Y_l), \end{aligned}$$

with Conditions (C1) and (C2), it follows that \(E\exp \{sf_2(W_i,W_j,W_l)\} < \infty \). Thus by Lemma 2, when \(n > 3\), we have

$$\begin{aligned} Pr\left( |U_n-E|f_2(W_i,W_j,W_l)\ge \frac{1}{4}cn^{-\kappa }\right) \le 2c_1\rho ^n. \end{aligned}$$
(10)

By Lemma 3 , let \(c_2 = 1\), then \(c_3 = \delta ^8/{36}\), when \(n\ge 36M^2\delta ^{-8}\), we have

$$\begin{aligned} Pr\left( \max _{i,j,l}\left| \frac{K(Y_i)K(Y_j)K(Y_l)}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}-1\right| \ge 1\right) \le 2.5n^3\exp \left\{ -c_3n\right\} . \end{aligned}$$
(11)

Therefore, by Eqs. (10) and (11),

$$\begin{aligned}&Pr\left( \left| J_{k11}\right| \ge \frac{1}{4}cn^{-\kappa }\right) \nonumber \\&\quad \le Pr\left( \max _{i,j,l}\left| \frac{K(Y_i)K(Y_j)K(Y_l)}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}-1\right| \ge 1\right) \nonumber \\&\qquad +\,Pr\left( |U_n-E|f_2(W_i,W_j,W_l)\ge \frac{1}{4}cn^{-\kappa }\right) \nonumber \\&\quad \le 2.5n^{3}\exp \left\{ -c_3n\right\} +2c_1\rho ^n. \end{aligned}$$
(12)

Since \(Ef_2(W_i,W_j,W_l)\le \frac{1}{\delta ^3}\sup _{k}E^2|X_{k}|\), by Lemma 3 , when \(\frac{\delta ^3cn^{-\kappa }}{4\sup _kE^2|X_k|} \le 1\) and \(n\ge 36M^2\delta ^{-8}\),

$$\begin{aligned} Pr\left( |J_{k12}|\ge \frac{1}{4}cn^{-\kappa }\right)\le & {} Pr\left( \frac{\sup _kE^2|X_k|}{\delta ^3}\max _{i,j,l}\left| \frac{K(Y_i)K(Y_j)K(Y_l)}{\widehat{K}(Y_i)\widehat{K}(Y_j)\widehat{K}(Y_l)}-1\right| \ge \frac{1}{4}cn^{-\kappa }\right) \nonumber \\\le & {} 2.5n^3\exp \left\{ -c_3n\right\} . \end{aligned}$$
(13)

For \(J_{k2}\), denote

$$\begin{aligned} f_3(W_i,W_j,W_l)=\frac{\varDelta _i\varDelta _j\varDelta _l}{K(Y_i)K(Y_j)K(Y_l)}X_{ik}X_{jk}I(Y_i<Y_l)I(Y_j<Y_l), \end{aligned}$$

it is verified that \(E\exp \{sf_3(W_i,W_j,W_l)\} < \infty \), then by Lemma 2,

$$\begin{aligned} Pr\left( |J_{k2}|\ge \frac{1}{4}cn^{-\kappa }\right) =Pr\left( |U_n-E|f_3(W_i,W_j,W_l)\ge \frac{1}{4}cn^{-\kappa }\right) \le 2c_1\rho ^n. \end{aligned}$$
(14)

Using triangle inequality and Eqs. (12)–(14), when \(n\ge m_0\), where \(m_0 = \max \{3, 36M^2\delta ^{-8}, [\frac{c\delta ^3}{4\sup _kE^2|X_k|}]^{\frac{1}{\kappa }}\}\), it follows that

$$\begin{aligned}&Pr\left( |I_{k1}|\ge \frac{3}{4}cn^{-\kappa }\right) \nonumber \\&\quad \le Pr\left( |J_{k11}|\ge \frac{1}{4}cn^{-\kappa }\right) + Pr\left( |J_{k12}|\ge \frac{1}{4}cn^{-\kappa }\right) + Pr\left( |J_{k2}|\ge \frac{1}{4}cn^{-\kappa }\right) \nonumber \\&\quad \le 5n^3\exp \left\{ -c_3n\right\} +4c_1\rho ^n. \end{aligned}$$
(15)

For \(I_{k2}\), under Condition (C1), it follows that

$$\begin{aligned} |\widehat{\omega }_{k2}|= & {} \left| \frac{1}{n(n-1)}\sum _{i\ne j}^n\frac{\varDelta _i\varDelta _j}{\widehat{K}^2(Y_i)\widehat{K}(Y_j)}X_{ik}^2I(Y_i<Y_j)\right| \\\le & {} \frac{1}{n(n-1)}\sum _{i\ne j}^n\left| \frac{K^2(Y_i)K(Y_j)}{\widehat{K}^2(Y_i)\widehat{K}(Y_j)}-1\right| \frac{\varDelta _i\varDelta _j}{K^2(Y_i)K(Y_j)}X_{ik}^2I(Y_i<Y_j) \\&+\, \frac{1}{n(n-1)}\sum _{i\ne j}^n\frac{\varDelta _i\varDelta _j}{K^2(Y_i)K(Y_j)}X_{ik}^2I(Y_i<Y_j)\\\le & {} \max _{i,j}\left| \frac{K^2(Y_i)K(Y_j)}{\widehat{K}^2(Y_i)\widehat{K}(Y_j)}-1\right| \frac{1}{n\delta ^3}\sum _{i=1}^nX_{ik}^2 +\frac{1}{n\delta ^3}\sum _{i=1}^nX_{ik}^2. \end{aligned}$$

Then taking \(c_4 = 1\) and \(c_5 = \delta ^8/36\), when \(n \ge 36M^2\delta ^{-8}\), with Condition (C2) and Lemma 4, we have

$$\begin{aligned}&Pr\left( \left| I_{k2}\right| \ge \frac{c}{4}n^{-\kappa }\right) \nonumber \\&\quad \le Pr\left( \max _{i,j}\left| \frac{K^2(Y_i)K(Y_j)}{\widehat{K}^2(Y_i)\widehat{K}(Y_j)}-1\right| \ge 1\right) +2Pr\left( \frac{1}{n\delta ^3}\sum _{i=1}^{n}X_{ik}^2\ge \frac{c}{8}(n-2)n^{-\kappa }\right) \nonumber \\&\quad \le 2.5n^2\exp \left\{ -c_5n\right\} +2\exp \left\{ -\frac{c}{8}\delta ^3n^{-\kappa }(n-2)\right\} E\exp \left\{ \frac{1}{n}\sum _{i=1}^{n} X_{ik}^2\right\} \nonumber \\&\quad \le 2.5n^2\exp \left\{ -c_5n\right\} +2M_0\exp \left\{ -\frac{c\delta ^3}{8}n^{-\kappa }(n-2)\right\} . \end{aligned}$$
(16)

Therefore, by Eqs. (9), (15) and (16), when \(n > m_0\), it follows that

$$\begin{aligned}&Pr\left( \max _{1\le k\le p}|\widehat{\omega }_k-\omega _k|\ge cn^{-\kappa } \right) \le p\left\{ Pr\left( \left| I_{k1}\right| + |I_{k2}|\ge cn^{-\kappa }\right) \right\} \\&\quad \le p\left\{ 4c_1\rho ^n+5n^3\exp \left( -c_3n\right) +2.5n^2\exp \left( -c_5n\right) + 2M_0\exp \left[ -c_6n^{-\kappa }(n-2)\right] \right\} , \end{aligned}$$

where \(c_6 = c\delta ^3/8\).

For the second statement, take \(\gamma _n = c_0n^{-\kappa }\), where \(c_0\le c\), then \(\gamma _n\le cn^{-\kappa }\), therefore,

$$\begin{aligned} \widehat{\mathscr {A}}=\{k:\widehat{\omega }_k\ge \gamma _n\}\supset \left\{ k:\widehat{\omega }_k\ge cn^{-\kappa }\right\} , \end{aligned}$$

let \(\mathscr {A}_n = \left\{ \max _{k\in \mathscr {A}}|\widehat{\omega }_k-\omega _k|\le cn^{-\kappa }\right\} \), if \(\mathscr {A}\nsubseteq \widehat{\mathscr {A}}\), there exist some \(k\in \mathscr {A}\), such that \(\widehat{\omega }_k<cn^{-\kappa }\), by Assumption (C3),

$$\begin{aligned} |\widehat{\omega }_k-\omega _k|> cn^{-\kappa }\Rightarrow & {} \{\mathscr {A}\nsubseteq \widehat{\mathscr {A}}\}\subset \{|\widehat{\omega }_k-\omega _k|> cn^{-\kappa }, \exists k\in \mathscr {A}\} \\\Rightarrow & {} \mathscr {A}_n\subseteq \{\mathscr {A}\subseteq \widehat{\mathscr {A}}\}. \end{aligned}$$

Therefore,

$$\begin{aligned}&Pr(\mathscr {A}\subseteq \widehat{\mathscr {A}})\\&\quad \ge 1-Pr\left( \max _{k\in \mathscr {A} }|\widehat{\omega }_k-\omega _k|> cn^{-\kappa }\right) \ge 1-sPr\left( |\widehat{\omega }_k-\omega _k|> cn^{-\kappa }\right) \\&\quad \ge 1-s\left\{ 4c_1\rho ^n+5n^3\exp \left( -c_3n\right) +2.5n^2\exp \left( -c_5n\right) + 2M_0\exp \left[ -c_6n^{-\kappa }(n-2)\right] \right\} , \end{aligned}$$

where s is the cardinality of \(\mathscr {A}\), here we complete the proof of Theorem 1. \(\square \)

Proof of Theorem 2

Recall \(w_k(t)\), by Condition (C4), for \(k\in \mathscr {I}\) and \(t \in \varPsi _T\), we can prove that,

$$\begin{aligned} w_k(t)= & {} E\left\{ E\left[ \frac{\varDelta }{K(Y)}X_kI(Y<t)|\mathbf {X}\right] \right\} = E\{X_kE[I(T<t)|\mathbf {X}]\}\\= & {} E\{X_kE[I(T<t)|\mathbf {X}_\mathscr {A}]\} = 0, \end{aligned}$$

and thus \(\omega _k = 0\). It follows from Condition (C3) that \(\min _{k\in \mathscr {A}} \omega _k - \max _{k\in \mathscr {I}} \omega _k > 2cn^{-\kappa }\). Thus,

$$\begin{aligned}&Pr\left( \min _{k\in \mathscr {A}} \widehat{\omega }_{k} \le \max _{k\in \mathscr {I}}\widehat{\omega }_{k} \right) \\&\quad = Pr\left( \min _{k\in \mathscr {A}}\widehat{\omega }_{k} - \min _{k\in \mathscr {A}}\omega _{k} + 2cn^{-\kappa } \le \max _{k\in \mathscr {I}} \widehat{\omega }_{k} - \max _{k\in \mathscr {I}}\omega _{k}\right) \\&\quad \le Pr\left( \sup _{k\in \mathscr {A}}|\widehat{\omega }_k - \omega _k| \ge cn^{-\kappa }\right) + Pr\left( \sup _{k\in \mathscr {I}}|\widehat{\omega }_k - \omega _k| \ge cn^{-\kappa }\right) \\&\quad \le 2p\left\{ 4c_1\rho ^n+5n^3\exp \left( -c_3n\right) +2.5n^2\exp \left( -c_5n\right) + 2M_0\exp \left[ -c_6n^{-\kappa }(n-2)\right] \right\} , \end{aligned}$$

here we complete the proof of Theorem 2.\(\square \)

Appendix B

See Table 12.

Table 12 Simulation results for Example 3: \(P_{all}\) and \(P_k\) corresponding to \(X_{1}-X_{p_1}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Yu, Y. & Zhou, Y. Nonparametric independence feature screening for ultrahigh-dimensional survival data. Metrika 81, 821–847 (2018). https://doi.org/10.1007/s00184-018-0660-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-018-0660-5

Keywords

Navigation