Skip to main content
Log in

An algebraic generalisation of some variants of simple correspondence analysis

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

For an analysis of the association between two categorical variables that are cross-classified to form a contingency table, graphical procedures have been central to this analysis. In particular, correspondence analysis has grown to be a popular method for obtaining such a summary and there is a great variety of different approaches that one may consider to perform. In this paper, we shall introduce a simple algebraic generalisation of some of the more common approaches to obtaining a graphical summary of association, where these approaches are akin to the correspondence analysis of a two-way contingency table. Specific cases of the generalised procedure include the classical and non-symmetrical correspondence plots and the symmetrical and isometric biplots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agresti A (2002) Categorical data analysis. Wiley, London

    Book  MATH  Google Scholar 

  • Aitchison J, Greenacre M (2002) Biplots of compositional data. Appl Stat 51:375–392

    MathSciNet  MATH  Google Scholar 

  • Andrews D (1972) Plots of high dimensional data. Biometrics 28:125–136

    Article  Google Scholar 

  • Beh EJ (1997) Simple correspondence analysis of ordinal cross-classifications using orthogonal polynomials. Biom J 39:589–613

    Article  MATH  Google Scholar 

  • Beh EJ (1998) A comparative study of scores for correspondence analysis with ordered categories. Biom J 40:413–429

    Article  MATH  Google Scholar 

  • Beh EJ (2001) Partitioning Pearson’s chi-squared statistic for singly ordered two-way contingency tables. Aust N Z J Stat 43:327–333

    Article  MathSciNet  MATH  Google Scholar 

  • Beh EJ (2004) Simple correspondence analysis: a bibliographic review. Int Stat Rev 72:257–284

    Article  MATH  Google Scholar 

  • Beh EJ (2008) Simple correspondence analysis of nominal-ordinal contingency tables. J Appl Math Decis Sci 2008:218140

  • Beh EJ (2010) Elliptical confidence regions for simple correspondence analysis. J Stat Plan Inference 140:2582–2588

    Article  MathSciNet  MATH  Google Scholar 

  • Beh EJ (2012) Simple correspondence analysis using adjusted residuals. J Stat Plan Inference 142:965–973

    Article  MathSciNet  MATH  Google Scholar 

  • Beh EJ, Lombardo R (2012) A genealogy of correspondence analysis. Aust N Z J Stat 54:137–168

    Article  MathSciNet  MATH  Google Scholar 

  • Beh EJ, Lombardo R (2014) Correspondence analysis: theory, practice and new strategies. Wiley, London

    Book  MATH  Google Scholar 

  • Beh EJ, Smith DR (2011) Real world occupational epidemiology, part 1: a visual interpretation of statistical significance. Arch Environ Occup Health 66:119–123

    Article  Google Scholar 

  • Best DJ (1995) Consumer data: statistical tests for differences in dispersion. Food Qual Prefer 6:221–225

    Article  Google Scholar 

  • Best DJ, Rayner JCW, O’Sullivan MG (1999) Product maps for sensory ranking and categorical data. In: Watson AJ, Bell GA (eds) Tastes and aromas, the chemical senses in science and industry. Wiley, New York, pp 114–119

    Google Scholar 

  • Best DJ, Rayner JCW, O’Sullivan MG (2000) Product maps for consumer categorical data. Food Qual Prefer 11:91–97

    Article  Google Scholar 

  • Chernoff H (1973) The use of faces to represent points in k-dimensional space graphically. J Am Stat Assoc 68:361–368

    Article  Google Scholar 

  • Choulakian V (1988) Exploratory analysis of contingency tables by loglinear formulation and generalizations of correspondence analysis. Psychometrika 53:235–250

    Article  MathSciNet  MATH  Google Scholar 

  • D’Ambra L, Lauro NC (1989) Non symmetrical analysis of three way contingency tables. In: Coppi R, Bolasco S (eds) Multiway data analysis. North-Holland, Amsterdam, pp 301–315

    Google Scholar 

  • D’Ambra L, Lauro NC (1992) Non-symmetrical exploratory data analysis. Stat Appl 4:511–529

    Google Scholar 

  • De Leeuw J (1993) Some generalizations of correspondence analysis. In: Cuadras CM, Rao CR (eds) Multivariate analysis: future directions 2. North-Holland, Amsterdam, pp 359–375

    Google Scholar 

  • Escoufier Y (1988) Assessing the number of axes that should be considered in correspondence analysis. In: Hayashi C, Diday E, Jambu M (eds) Recent developments in clustering and data analysis. Academic Press, Cambridge, pp 231–240

    Chapter  Google Scholar 

  • Freeman MF, Tukey JW (1950) Transformations related to the angular square root. Ann Math Stat 21:607–611

    Article  MathSciNet  MATH  Google Scholar 

  • Friendly M (1994) Mosaic displays for multi-way contingency tables. J Am Stat Assoc 89:190–200

    Article  Google Scholar 

  • Friendly M (1999) Extending mosaic displays: marginal, conditional, and partial views of categorical data. J Comput Graph Stat 8:373–395

    Google Scholar 

  • Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453–467

    Article  MathSciNet  MATH  Google Scholar 

  • Gabriel KR, Orodoff CL (1990) Biplots in biomedical research. Stat Med 9:469–485

    Article  Google Scholar 

  • Gilula Z, Krieger M, Ritov Y (1988) Ordinal association in contingency tables: some interpretative aspects. J Am Stat Assoc 83:540–545

    Article  MATH  Google Scholar 

  • Goodman LA (1986) Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables. Int Stat Rev 54:243–309

    Article  MathSciNet  MATH  Google Scholar 

  • Goodman LA (1996) A single general method for the analysis of cross-classified data: reconciliation and synthesis of some methods of Pearson, Yule, Fisher, and also some methods of correspondence analysis and association analysis. J Am Stat Assoc 91:408–428

    Article  MathSciNet  MATH  Google Scholar 

  • Goodman LA, Kruskal WH (1954) Measures of association for cross-classifications. J Am Stat Assoc 49:732–764

    MATH  Google Scholar 

  • Gower J, Lubbe S, le Roux N (2011) Understanding biplots. Wiley, London

    Book  Google Scholar 

  • Gower JC, le Roux NJ, Gardner-Lubbe S (2014) Biplots: quantitative data. WIREs Comput Stat 7:42–62

    Article  MathSciNet  Google Scholar 

  • Grassi M, Visentin S (1994) Correspondence analysis applied to grouped cohort data. Stat Med 13:2407–2425

    Article  Google Scholar 

  • Greenacre MJ (1984) Theory and application of correspondence analysis. Academic Press, London

    MATH  Google Scholar 

  • Greenacre MJ (1990) Some limitations of multiple correspondence analysis. Comput Stat Quaterly 3:249–256

    MATH  Google Scholar 

  • Greenacre MJ (1993) Biplots in correspondence analysis. J Appl Stat 20:251–269

    Article  Google Scholar 

  • Greenacre M (2010a) Biplots in practice. Fundacion BBVA, Madrid

    Google Scholar 

  • Greenacre M (2010b) Correspondence analysis. WIRE’s Comput Stat 2:613–619

    Article  Google Scholar 

  • Greenacre M, Blasius J (eds) (2006) Multiple correspondence analysis and related methods. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Haberman SJ (1973) The analysis of residuals in cross-classified tables. Biometrics 29:205–220

    Article  Google Scholar 

  • Kroonenberg PM, Lombardo R (1998) Nonsymmetric correspondence analysis: a tutorial. Kwant Methoden 58:57–83

    Google Scholar 

  • Linting M, Meulman JJ, Groenen PJF, van der Kooij AJ (2007) Stability of nonlinear principal components analysis: an empirical study using the balanced bootstrap. Psychol Methods 12:359–379

    Article  Google Scholar 

  • Lombardo R, Ringrose T (2012) Bootstrap confidence regions in non-symmetrical correspondence analysis. Electron J Appl Stat Anal 5:413–417

    MathSciNet  Google Scholar 

  • Lombardo R, Carlier A, D’Ambra L (1996) Nonsymmetric correspondence analysis for three-way contingency tables. Methodologica 4:59–80

    Google Scholar 

  • Lombardo R, Beh EJ, D’Ambra L (2007) Non-symmetric correspondence analysis with ordinal variables. Comput Stat Data Anal 52:566–577

    Article  MATH  Google Scholar 

  • Lombardo R, Beh EJ, D’Ambra A (2011) Studying the dependence between ordinal-nominal categorical variables via orthogonal polynomials. J Appl Stat 38:2119–2132

    Article  MathSciNet  Google Scholar 

  • Lombardo R, Beh EJ, Kroonenberg PM (2016) Modelling trends in ordered correspondence analysis using orthogonal polynomials. Psychometrika 81:325–349

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenzo-Seva U, van de Velden M, Kiers HAL (2009) Oblique rotation in correspondence analysis: a step forward in the search for the simplest interpretation. Br J Math Stat Psychol 62:583–600

    Article  MathSciNet  Google Scholar 

  • Markus MT (1994) Bootstrap confidence regions in non-linear multivariate analysis. DSWO Press, Leiden

    MATH  Google Scholar 

  • Nishisato S (2007) Multidimensional nonlinear descriptive analysis. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  • Ringrose TJ (2012) Bootstrap confidence regions for correspondence analysis. J Stat Comput Simul 82:1397–1413

    Article  MathSciNet  MATH  Google Scholar 

  • Selikoff IJ (1981) Household risks with inorganic fibers. Bull N Y Acad Med 57:947–961

    Google Scholar 

  • Upton GJG (2000) Cobweb diagrams for multiway contingency tables. The Statistician 49:79–85

    Google Scholar 

  • Upton GJG (2016) Categorical data analysis by example. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Van de Velden M, Kiers HAL (2005) Rotation in correspondence analysis. J Classif 22:251–271

    Article  MathSciNet  MATH  Google Scholar 

  • Yanai H (1986) Some generalizations of correspondence analysis in terms of projection operators. In: Diday E, Escoufier Y, Lebart L, Pagés JP, Schektman Y, Thomassone R (eds) Data analysis and informatics IV. North-Holland, Amsterdam, pp 193–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Beh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 198 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beh, E.J., Lombardo, R. An algebraic generalisation of some variants of simple correspondence analysis. Metrika 81, 423–443 (2018). https://doi.org/10.1007/s00184-018-0649-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-018-0649-0

Keywords

Navigation