Skip to main content
Log in

Modelling Trends in Ordered Correspondence Analysis Using Orthogonal Polynomials

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The core of the paper consists of the treatment of two special decompositions for correspondence analysis of two-way ordered contingency tables: the bivariate moment decomposition and the hybrid decomposition, both using orthogonal polynomials rather than the commonly used singular vectors. To this end, we will detail and explain the basic characteristics of a particular set of orthogonal polynomials, called Emerson polynomials. It is shown that such polynomials, when used as bases for the row and/or column spaces, can enhance the interpretations via linear, quadratic and higher-order moments of the ordered categories. To aid such interpretations, we propose a new type of graphical display—the polynomial biplot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agresti, A. (1996). An introduction to categorical data analysis. New York: Wiley.

    Google Scholar 

  • Agresti, A. (2010). Analysis of ordinal categorical data (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Beh, E. J. (1997). Simple correspondence analysis of ordinal cross-classifications using orthogonal polynomials. Biometrical Journal, 39, 589–613.

    Article  Google Scholar 

  • Beh, E. J. (1998). A comparative study of scores for correspondence analysis with ordered categories. Biometrical Journal, 40, 413–429.

    Article  Google Scholar 

  • Beh, E. J. (2001). Partitioning Pearson’s chi-squared statistic for singly ordered two-way contingency tables. The Australian and New Zealand Journal of Statistics, 43, 327–333.

    Article  Google Scholar 

  • Beh, E. J., & Davy, P. J. (1998). Partitioning Pearson’s chi-squared statistic for a completely ordered three-way contingency table. The Australian and New Zealand Journal of Statistics, 40, 465–477.

    Article  Google Scholar 

  • Beh, E. J., & Lombardo, R. (2012). A genealogy of correspondence analysis. The Australian and New Zealand Journal of Statistics, 54, 137–168.

    Article  Google Scholar 

  • Beh, E. J., & Lombardo, R. (2014). Correspondence analysis: Theory, practice and new methods. Chichester: Wiley.

    Book  Google Scholar 

  • Beh, E. J., Simonetti, B., & D’Ambra, L. (2007). Partitioning a non-symmetric measure of association for three-way contingency tables. Journal of Multivariate Analysis, 98, 1391–1411.

    Article  Google Scholar 

  • Best, D. J., & Rayner, J. C. W. (1996). Nonparametric analysis for doubly ordered two-way contingency tables. Biometrics, 52, 1153–1156.

    Article  Google Scholar 

  • Böckenholt, U., & Böckenholt, I. (1990). Canonical analysis of contingency tables with linear constraints. Psychometrika, 55, 633–69.

    Article  Google Scholar 

  • Böckenholt, U., & Takane, Y. (1990). Linear constraints in correspondence analysis. In M. Greenacre & J. Blasius (Eds.), Correspondence analysis in the social science. Recent developments and applications (pp. 112–127). Italy: Academic press.

    Google Scholar 

  • Corbellini, D., Riani, M., & Donatini, A. (2008). Multivariate data analysis techniques to detect early warnings of elderly frailty. Statistica Applicata, 20, 159–178.

    Google Scholar 

  • Cressie, N., & Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society (Series B), 46, 440–464.

    Google Scholar 

  • D’Ambra, L., Beh, E. J., & Amenta, P. (2005). CATANOVA for two-way contingency tables with ordinal variables using orthogonal polynomials. Communication in Statistics, 34, 1755–1769.

    Article  Google Scholar 

  • D’Ambra, L., & Lauro, N. C. (1989). Non-symmetrical correspondence analysis for three-way contingency tables. In R. Coppi & S. Bolasco (Eds.), Multiway data analysis (pp. 301–315). Amsterdam: North-Holland.

    Google Scholar 

  • D’Ambra, L., Lombardo, R., & Amenta, P. (2002). Non symmetric correspondence analysis for ordered two-way contingency table. In Atti della XLI Riunione Scientifica della Società Italiana di Statistica [Proceedings of the XLI Scientific Meeting of the Italian Statistical Society] (pp. 191–201). Milan, Italy: University of Milano Bicocca.

  • Dieudonné, J. (1953). On biorthogonal systems. Michigan Mathematical Journal, 2(1), 7–20.

    Article  Google Scholar 

  • Emerson, P. L. (1968). Numerical construction of orthogonal polynomials from a general recurrence formula. Biometrics, 24, 696–701.

    Article  Google Scholar 

  • Gifi, A. (1990). Non-linear multivariate analysis. Chichester: Wiley.

    Google Scholar 

  • Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49, 732–764.

    Google Scholar 

  • Greenacre, M. (1984). Theory and application of correspondence analysis. London: Academic Press.

    Google Scholar 

  • Greenacre, M. (2007). Correspondence analysis in practice (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Hudson, D. J. (1969). Corrections: Numerical construction of orthogonal polynomials from a general recurrence relation. Biometrics, 25, 778.

    Google Scholar 

  • Israëls, A. (1987). Eigenvalue techniques for qualitative data. Leiden: DSWO Press.

    Google Scholar 

  • Kroonenberg, P. M., & Lombardo, R. (1999). Nonsymmetric correspondence analysis: A tool for analysing contingency tables with a dependence structure. Multivariate Behavioral Research Journal, 34, 367–397.

    Article  Google Scholar 

  • Lauro, N. C., & D’Ambra, L. (1984). L’Analyse non symmétrique des correspondances. In E. Diday (Ed.), Data analysis and informatics III (pp. 433–446). Amsterdam: Elsevier.

    Google Scholar 

  • Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate descriptive statistical analysis. New York: Wiley.

    Google Scholar 

  • Light, R. J., & Margolin, B. H. (1971). An analysis of variance for categorical data. Journal of the American Statistical Association, 66, 534–544.

    Article  Google Scholar 

  • Lombardo, R., & Beh, E. J. (2010). Simple and multiple correspondence analysis using orthogonal polynomials. Journal of Applied Statistics, 37, 2101–2116.

    Article  Google Scholar 

  • Lombardo, R., Beh, E. J., & D’Ambra, L. (2007). Non-symmetric correspondence analysis with ordinal variables. Computational Statistics and Data Analysis, 52, 566–577.

    Article  Google Scholar 

  • Lombardo, R., Beh, E. J., & D’Ambra, A. (2011). Studying the dependence between ordinal-nominal categorical variables via orthogonal polynomials. Journal of Applied Statistics, 38, 2119–2132.

    Article  Google Scholar 

  • Lombardo, R., & Meulman, J. J. (2010). Multiple correspondence analysis via polynomial transformations of ordered categorical variables. Journal of Classification, 27, 191–210.

    Article  Google Scholar 

  • Manté, C., Bernard, G., Bonhomme, P., & Nerini, D. (2013). Application of ordinal correspondence analysis for submerged aquatic vegetation monitoring. Journal of Applied Statistics, 40, 1619–1638.

    Article  Google Scholar 

  • Meulman, J. J., Van der Kooij, A. J., & Heiser, W. J. (2004). Principal component analysis with nonlinear optimal scaling transformations for ordinal and nominal data. In D. Kaplan (Ed.), Handbook of quantitative methods in the social sciences. Newbury Park, CA: Sage.

    Google Scholar 

  • Nair, V. (1986). Testing an industrial reduction method with ordered categorical data. Technometrics, 28, 283–311.

    Article  Google Scholar 

  • Nishisato, S. (1980). Analysis of categorical data: Dual scaling and its applications. Toronto: University of Toronto Press.

    Google Scholar 

  • Nishisato, S. (2007). Multidimensional nonlinear descriptive analysis. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Nishisato, S., & Arri, P. S. (1975). Non-linear programming approach to optimal scaling of partially ordered categories. Psychometrika, 40, 525–547.

    Article  Google Scholar 

  • Rayner, J. C. W., & Beh, E. J. (2009). Towards a better understanding of correlation. Statistica Neerlandica, 63, 324–333.

    Article  Google Scholar 

  • Robson, D. S. (1959). A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced. Biometrics, 15, 187–191.

    Article  Google Scholar 

  • Takane, Y., & Jung, S. (2009). Regularized nonsymmetric correspondence analysis. Computational Statistics and Data Analysis, 53(8), 3159–3170.

    Article  Google Scholar 

  • Takane, Y., Yanai, H., & Mayekawa, S. (1991). Relationships among several methods of linearly constrained correspondence analysis. Psychometrika, 56, 667–684.

    Article  Google Scholar 

  • Ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful for the comments made by the associate editor and referees during the preparation of this paper. Their comments and insights have greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaria Lombardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombardo, R., Beh, E.J. & Kroonenberg, P.M. Modelling Trends in Ordered Correspondence Analysis Using Orthogonal Polynomials. Psychometrika 81, 325–349 (2016). https://doi.org/10.1007/s11336-015-9448-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-015-9448-y

Keywords

Navigation