Skip to main content
Log in

Optimal choice of order statistics under confidence region estimation in case of large samples

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The problem of optimal estimation of location and scale parameters of distributions, by means of two-dimensional confidence regions based on L-statistics, is considered. The case, when the sample size tends to infinity, is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alama-Bućko M, Nagaev AV, Zaigraev A (2006) Asymptotic analysis of minimum volume confidence regions for location-scale families. Applicationes Mathematicae (Warszawa) 33:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Barry C, Arnold N, Balakrishnan H, Nagaraja N (1992) A first course in order statistics. Wiley Series in Probability and Mathematical Statistics. Wiley, New York. p 279

  • Czarnowska A, Nagaev AV (2001) Confidence regions of minimal area for the scale-location parameter and their applications. Applicationes Mathematicae (Warszawa) 28:125–142

    Article  MathSciNet  MATH  Google Scholar 

  • David HA, Nagaraja HN (2003) Order statistics. Wiley, New York, p 458

    Book  MATH  Google Scholar 

  • Einmahl JHJ, Mason DM (1992) Generalized quantile processes. Ann Stat 20:1062–1078

    Article  MathSciNet  MATH  Google Scholar 

  • Masoom Ali M, Umbach D (1998) Optimal linear inference using selected order statistics in location-scale models. In: Handbook of Statistics. 17:183–213. North-Holland, Amsterdam

  • Mosteller F (1946) On some useful “inefficient” statistics. Ann Math Stat 17:377–408

    Article  MathSciNet  MATH  Google Scholar 

  • Ogawa J (1998) Optimal spacing of the selected sample quantiles for the joint estimation of the location and scale parameters of a symmetric distribution. J Stat Plan Inf 70:345–360

    Article  MathSciNet  MATH  Google Scholar 

  • Zaigraev A, Alama-Bućko M (2013) On optimal choice of order statistics in large samples for the construction of confidence regions for the location and scale. Metrika 76:577–593

    Article  MathSciNet  MATH  Google Scholar 

  • Zaigraev A, Alama-Bućko M (2017) Asymptotics of the optimal confidence region for shift and scale, based on two order statistics. In: Statistical methods of estimation and testing hypotheses, in Russian. Perm University, Perm, pp 49-65 (2006); translated in: J Math Sci 220(6):763–776

Download references

Acknowledgements

The authors are grateful to the referees for useful suggestions improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zaigraev.

Appendix

Appendix

Proof of Lemma 1

Denote

$$\begin{aligned} Q(i,j)=\frac{(A_iB_j-A_jB_i)^2}{(F(u_i)-F(u_{i-1}))(F(u_j)-F(u_{j-1}))},\quad i,j=1,\ldots ,k+1,\ i<j. \end{aligned}$$

Let \(j=j^*\) be arbitrarily but fixed. Evidently, \(B_{j^*+1}\rightarrow 0,\ A_{j^*+1}\rightarrow 0\) if \(u_{j^*}\rightarrow u_{j^*+1}\) for \(1\le j^*<k\) and, therefore, \(Q(i,j^*+1)\rightarrow 0\) for all \(i<j^*+1\) and \(Q(j^*+1,i)\rightarrow 0\) for all \(i>j^*+1.\) Thus, we obtain as \(u_{j^*}\rightarrow u_{j^*+1}\) given \(1\le j^*<k\): \(\square \)

$$\begin{aligned}&\varDelta (u_1,\ldots ,u_{j^*-1},u_{j^*},u_{j^*+1},\ldots ,u_k)=\sum ^{k+1}_{i,j=1,i<j}Q(i,j)\\&\quad \rightarrow \varDelta (u_1,\ldots ,u_{j^*-1},u_{j^*+1},\ldots ,u_k). \end{aligned}$$

A similar result we get letting \(u_{j^*}\rightarrow u_{j^*-1}\) given \(1<j^*\le k.\)

Now we prove the second part of the statement concerning the derivatives. The derivative \(\varDelta '_{u_{j^*}}\) can be written as

$$\begin{aligned} \varDelta '_{u_{j^*}}= & {} \sum ^{j^*-1}_{i=1}Q'_{u_{j^*}}(i,j^*) +\sum ^{j^*-1}_{i=1}Q'_{u_{j^*}}(i,j^*+1)+Q'_{u_{j^*}} (j^*,j^*+1)\\&+\,\sum ^{k+1}_{j=j^*+2}Q'_{u_{j^*}}(j^*,j) +\sum ^{k+1}_{j=j^*+2}Q'_{u_{j^*}}(j^*+1,j)\\= & {} \varDelta '_1+\varDelta '_2+\varDelta '_3+\varDelta '_4+\varDelta '_5. \end{aligned}$$

We obtain

$$\begin{aligned} \varDelta '_1= & {} -\frac{f(u_{j^*})}{\left( F(u_{j^*})-F(u_{j^*\!-\!1})\right) ^2}\sum ^{j^*\!-\!1}_{i=1}\frac{(A_iB_{j^*}-B_iA_{j^*})^2}{F(u_i)-F(u_{i-1})}+\frac{2}{F(u_{j^*})-F(u_{j^*\!-\!1})}\\&\times \sum ^{j^*\!-\!1}_{i=1}\frac{(A_iB_{j^*}-B_iA_{j^*})\left[ A_i\left( f(u_{j^*})+u_{j^*}f'(u_{j^*})\right) -B_if'(u_{j^*})\right] }{F(u_i)-F(u_{i-1})},\\ \varDelta '_2= & {} \frac{f(u_{j^*})}{\left( F(u_{j^*\!+\!1})-F(u_{j^*})\right) ^2}\sum ^{j^*\!-\!1}_{i=1}\frac{(A_iB_{j^*\!+\!1}-B_iA_{j^*\!+\!1})^2}{F(u_i)-F(u_{i-1})}-\frac{2}{F(u_{j^*\!+\!1})-F(u_{j^*})}\\&\times \sum ^{j^*\!-\!1}_{i=1}\frac{(A_iB_{j^*\!+\!1}-B_iA_{j^*\!+\!1}) \left[ A_i\left( f(u_{j^*})+u_{j^*}f'(u_{j^*})\right) -B_if'(u_{j^*})\right] }{F(u_i)-F(u_{i-1})},\\ \varDelta '_3= & {} 2(A_{j^*}B_{j^*\!+\!1}-A_{j^*\!+\!1} B_{j^*}) \\&\times \frac{(B_{j^*\!+\!1}+B_{j^*})f'(u_{j^*})-(A_{j^*\!+\!1}+A_{j^*}) \left( f(u_{j^*})+u_{j^*}f'(u_{j^*})\right) }{\left( F(u_{j^*\!+\!1})-F(u_{j^*})\right) \left( F(u_{j^*})-F(u_{j^*\!-\!1})\right) }\\&-\,\frac{(A_{j^*}B_{j^*\!+\!1}-A_{j^*\!+\!1}B_{j^*})^2f(u_{j^*})}{\left( F(u_{j^*\!+\!1})-F(u_{j^*})\right) \left( F(u_{j^*})-F(u_{j^*\!-\!1})\right) ^2} \\&+\,\frac{(A_{j^*}B_{j^*\!+\!1}-A_{j^*\!+\!1}B_{j^*})^2f(u_{j^*})}{\left( F(u_{j^*\!+\!1})-F(u_{j^*})\right) ^2\left( F(u_{j^*})-F(u_{j^*\!-\!1})\right) },\\ \varDelta '_4= & {} -\frac{f(u_{j^*})}{\left( F(u_{j^*})-F(u_{j^*\!-\!1})\right) ^2}\sum ^{k+1}_{i=j^*\!+\!2}\frac{(A_{j^*}B_i-B_{j^*}A_i)^2}{F(u_i)-F(u_{i-1})}+\frac{2}{F(u_{j^*})-F(u_{j^*\!-\!1})} \\&\times \sum ^{k+1}_{i=j^*\!+\!2}\frac{(A_{j^*}B_i-B_{j^*}A_i)\left[ B_if'(u_{j^*})- A_i\left( f(u_{j^*})+u_{j^*}f'(u_{j^*})\right) \right] }{F(u_i)-F(u_{i-1})},\\ \varDelta '_5= & {} \frac{f(u_{j^*})}{\left( F(u_{j^*\!+\!1})-F(u_{j^*})\right) ^2}\sum ^{k+1}_{i=j^*\!+\!2}\frac{(A_{j^*\!+\!1}B_i-B_{j^*\!+\!1}A_i)^2}{F(u_i)-F(u_{i-1})} -\frac{2}{F(u_{j^*\!+\!1})-F(u_{j^*})}\\&\times \sum ^{k+1}_{i=j^*\!+\!2}\frac{(A_{j^*\!+\!1}B_i-B_{j^*\!+\!1}A_i) \left[ B_if'(u_{j^*})-A_i\left( f(u_{j^*})+u_{j^*}f'(u_{j^*})\right) \right] }{F(u_i)-F(u_{i-1})}. \end{aligned}$$
  • If \(u_{j^*}\rightarrow u_{j^*\!+\!1},\) then

  • for \(i<j^*:\ A_iB_{j^*}-B_iA_{j^*}\sim A_i\left( B_{j^*\!+\!1}+B_{j^*}\right) -B_i\left( A_{j^*\!+\!1}+A_{j^*}\right) \ \) and

  • \(A_iB_{j^*\!+\!1}-B_iA_{j^*\!+\!1}\sim \left( u_{j^*\!+\!1}-u_{j^*}\right) \left[ A_i\left( f(u_{j^*\!+\!1})+u_{j^*\!+\!1}f'(u_{j^*\!+\!1})\right) -B_if'(u_{j^*\!+\!1})\right] ;\)

  • \(A_{j^*}B_{j^*\!+\!1}-B_{j^*}A_{j^*\!+\!1}\sim \left( u_{j^*\!+\!1}-u_{j^*}\right) \left[ \left( A_{j^*\!+\!1}+A_{j^*}\right) \left( f(u_{j^*\!+\!1})+ u_{j^*\!+\!1}f'(u_{j^*\!+\!1})\right) -\left( B_{j^*\!+\!1}+B_{j^*}\right) f'(u_{j^*+\!1})\right] ;\)

  • for \(i>j^*\!+\!1:\ A_{j^*}B_i-B_{j^*}A_i\sim B_i\left( A_{j^*\!+\!1}+A_{j^*}\right) -A _i(B_{j^*\!+\!1}+B_{j^*})\ \) and

  • \(A_{j^*\!+\!1}B_i-B_{j^*\!+\!1}A_i\sim \left( u_{j^*\!+\!1}-u_{j^*}\right) \left[ B_if'(u_{j^*\!+\!1})-A_i\left( f(u_{j^*\!+\!1})+ u_{j^*\!+\!1}f'(u_{j^*\!+\!1})\right) \right] .\) Therefore, as \(u_{j^*}\rightarrow u_{j^*\!+\!1},\)

$$\begin{aligned} \varDelta '_1\sim & {} -\frac{f(u_{j^*\!+\!1})}{\left( F(u_{j^*\!+\!1})-F(u_{j^*\!-\!1})\right) ^2} \sum ^{j^*\!-\!1}_{i=1}\frac{\left( A_i \left( B_{j^*\!+\!1}+B_{j^*}\right) -B_i\left( A_{j^*\!+\!1}+A_{j^*}\right) \right) ^2}{F(u_i)-F(u_{i-1})}\\&+\,\frac{2}{F(u_{j^*\!+\!1})\!-\!F(u_{j^*\!-\!1})} \sum ^{j^*\!-\!1}_{i=1}\frac{\left( A_i(B_{j^*\!+\!1}\!+\!B_{j^*})\!-\!B_i (A_{j^*\!+\!1}\!+\!A_{j^*})\right) }{F(u_i)\!-\!F(u_{i-1})}\\&\times \left[ A_i\left( f(u_{j^*\!+\!1})\!+\!u_{j^*\!+\!1}f'(u_{j^*\!+\!1})\right) \!-\!B_i f'(u_{j^*\!+\!1})\right] ,\\ \varDelta '_2\sim & {} -\frac{1}{f(u_{j^*\!+\!1})}\sum ^{j^*\!-\!1}_{i=1}\frac{\left[ A_i\left( f(u_{j^*\!+\!1})+u_{j^*\!+\!1}f'(u_{j^*\!+\!1})\right) -B_if'(u_{j^*\!+\!1})\right] ^2}{F(u_i)-F(u_{i-1})},\\ \varDelta '_3\!\sim & {} \!-\frac{\left[ \left( B_{j^*+1}\!+\!B_{j^*}\right) f'(u_{j^*\!+\!1})\!-\!(A_{j^*+1}\! +\!A_{j^*}) \left( f(u_{j^*\!+\!1})\!+\!u_{j^*\!+\!1}f'(u_{j^*\!+\!1})\right) \right] ^2}{\left( F(u_{j^*\!+\!1}) -F(u_{j^*\!-\!1})\right) f(u_{j^*\!+\!1})}\!<\!0,\\ \varDelta '_4\sim & {} -\frac{f(u_{j^*\!+\!1})}{\left( F(u_{j^*\!+\!1})-F(u_{j^*\!-\!1})\right) ^2} \sum ^{k+1}_{i=j^*\!+\!2} \frac{\left[ B_i(A_{j^*\!+\!1}+A_{j^*})-A_i(B_{j^*\!+\!1}+B_{j^*})\right] ^2}{F(u_i)-F(u_{i-1})}\\&+\,\frac{2}{F(u_{j^*\!+\!1})\!-\!F(u_{j^*\!-\!1})}\sum ^{k+1}_{i=j^*\!+\!2} \frac{\left[ B_i(A_{j^*\!+\!1}\!+\!A_{j^*})\!-\!A_i \left( B_{j^*\!+\!1}\!+\!B_{j^*}\right) \right] }{F(u_i)\!-\!F(u_{i-1})} \\&\times \left[ B_if'(u_{j^*\!+\!1})\!-\!A_i\left( f(u_{j^*\!+\!1})\!+\!u_{j^*\!+\!1} f'(u_{j^*\!+\!1})\right) \right] ,\\ \varDelta '_5\sim & {} -\frac{1}{f(u_{j^*\!+\!1})} \sum ^{k+1}_{i=j^*\!+\!2}\frac{\left[ B_if'(u_{j^*\!+\!1})-A_i\left( f(u_{j^*\!+\!1})+ u_{j^*\!+\!1}f'(u_{j^*\!+\!1})\right) \right] ^2}{F(u_i)-F(u_{i-1})}. \end{aligned}$$

Finally,

$$\begin{aligned} \varDelta '_1+\varDelta '_2\sim & {} -\sum ^{j^*-1}_{i=1}\frac{(C_{j^*}A_i-D_{j^*}B_i)^2}{F(u_i)-F(u_{i-1})}<0,\\ \varDelta '_4+\varDelta '_5\sim & {} -\sum ^{k+1}_{i=j^*+2}\frac{(D_{j^*}B_i-C_{j^*}A_i)^2}{F(u_i)-F(u_{i-1})}<0, \end{aligned}$$

where

$$\begin{aligned} C_{j^*}= & {} \frac{(B_{j^*\!+\!1}+B_{j^*})\sqrt{f(u_{j^*\!+\!1})}}{F(u_{j^*\!+\!1})-F(u_{j^*\!-\!1})}- \frac{f(u_{j^*\!+\!1})+u_{j^*\!+\!1}f'(u_{j^*\!+\!1})}{\sqrt{f(u_{j^*\!+\!1})}},\\ D_{j^*}= & {} \frac{(A_{j^*\!+\!1}+A_{j^*})\sqrt{f(u_{j^*\!+\!1})}}{F(u_{j^*\!+\!1})-F(u_{j^*\!-\!1})}- \frac{f'(u_{j^*\!+\!1})}{\sqrt{f(u_{j^*\!+\!1})}}, \end{aligned}$$

and \(\varDelta '_{u_{j^*}}=\varDelta '_1+\varDelta '_2+\varDelta '_3+\varDelta '_4+\varDelta '_5<0\) as \(u_{j^*}\rightarrow u_{j^*\!+\!1}.\)

Similarly, one can prove that if \(u_{j^*}\rightarrow u_{j^*\!-\!1},\) then \(\varDelta '_{u_{j^*}}=\varDelta '_1+\varDelta '_2+ \varDelta '_3 +\varDelta '_4+\varDelta '_5>0.\)

Proof of Theorem 2

Consider \(\varDelta \) as a function of \(u_k\) and use the representation from the proof of Lemma 1. The derivative \(\varDelta '_{u_k}\) can be written as

$$\begin{aligned} \varDelta '_{u_k}=\sum ^{k\!-\!1}_{i=1}Q'_{u_k}(i,k)+\sum ^{k\!-\!1}_{i=1}Q'_{u_k}(i,k\!+\!1)+Q'_{u_k} (k,k\!+\!1)=\varDelta '_1+\varDelta '_2+\varDelta '_3. \end{aligned}$$

\(\square \)

As in the proof of Lemma 1, we obtain

$$\begin{aligned} \varDelta '_1= & {} -\frac{f(u_k)}{\left( F(u_k)-F(u_{k-1})\right) ^2}\sum ^{k-1}_{i=1}\frac{(A_iB_k-B_iA_k)^2}{F(u_i)-F(u_{i-1})}\\&+\,\frac{2}{F(u_k)-F(u_{k-1})}\sum ^{k-1}_{i=1}\frac{(A_iB_k-B_iA_k)[A_i\left( f(u_k)+u_kf'(u_k)\right) -B_if'(u_k)]}{F(u_i)-F(u_{i-1})},\\ \varDelta '_2= & {} \left[ \frac{2f(u_k)f'(u_k)}{1-F(u_k)}+\frac{f^3(u_k)}{(1-F(u_k))^2}\right] \sum ^{k-1}_{i=1} \frac{(u_kA_i-B_i)^2}{F(u_i)-F(u_{i-1})} \\&+\,\frac{2f^2(u_k)}{1-F(u_k)}\sum ^{k-1}_{i=1} \frac{A_i(u_kA_i-B_i)}{F(u_i)-F(u_{i-1})},\\ \varDelta '_3= & {} \frac{f^2(u_{k-1})f(u_k)(u_k-u_{k-1})}{(1-F(u_k))(F(u_k)-F(u_{k-1}))}\bigg [2f'(u_k)(u_k-u_{k-1})+2f(u_k)\\&-\,\frac{f^2(u_k)(u_k-u_{k-1})}{F(u_k)-F(u_{k-1})} +\frac{f^2(u_k)(u_k-u_{k-1})}{1-F(u_k)}\bigg ]. \end{aligned}$$

First, assume that (20) holds. Then, as \(u_k\rightarrow u^+=\infty ,\)

$$\begin{aligned} \varDelta '_{u_k}\!= & {} \varDelta '_1+\varDelta '_2+\varDelta '_3\sim \\&-\,\frac{f(u_k)}{\left( 1-F(u_{k-1})\right) ^2}\sum ^{k-1}_{i=1} \frac{\left[ f(u_k)(A_iu_k-B_i)-f(u_{k-1})(A_iu_{k-1}-B_i)\right] ^2}{F(u_i)-F(u_{i-1})}\\&+\,\frac{2}{1-F(u_{k-1})}\sum ^{k-1}_{i=1}\frac{\left[ f(u_k)(A_iu_k-B_i)-f(u_{k-1})(A_iu_{k-1}-B_i)\right] }{F(u_i)-F(u_{i-1})} \\&\times \left[ A_i(f(u_k)+u_kf'(u_k))-B_if'(u_k)\right] \\&+\,\left[ \frac{2f(u_k)f'(u_k)u^2_k}{1-F(u_k)}+\frac{f^3(u_k)u^2_k}{(1-F(u_k))^2}+\frac{2f^2(u_k)u_k}{1-F(u_k)} \right] \sum ^{k-1}_{i=1}\frac{A^2_i}{F(u_i)-F(u_{i-1})}\\&+\,\frac{f^2(u_{k-1})f(u_k)(u_k-u_{k-1})}{(1-F(u_k))(F(u_k)-F(u_{k-1}))}\left[ 2f'(u_k)u_k+2f(u_k)+ \frac{f^2(u_k)u_k}{1-F(u_k)}\right] \\&\sim -f(u_k)h^2(u_{k-1})\sum ^{k-1}_{i=1}\frac{(A_iu_{k-1}-B_i)^2}{F(u_i)-F(u_{i-1})}- 2(f'(u_k)u_k+f(u_k))h(u_{k-1})\\&\times \sum ^{k-1}_{i=1}\frac{A_i(A_iu_{k-1}-B_i)}{F(u_i)-F(u_{i-1})}+\Bigl [\!2\beta f'(u_k)u_k+2\beta f(u_k)\\&+\beta ^2f(u_k)\Bigr ]\!\sum ^{k-1}_{i=1}\frac{A^2_i}{F(u_i)-F(u_{i-1})}\\&+\,\beta f(u_{k-1})h(u_{k-1})\!\left[ 2f'(u_k)u_k\!+\!2f(u_k)\!+\!\beta f(u_k)\right] , \end{aligned}$$

where \(h(u)=f(u)/(1-F(u)).\) Since \(f'(u_k)u_k+f(u_k)\sim -\beta f(u_k),\) we get

$$\begin{aligned} \varDelta '_{u_k}\sim -f(u_k)\left[ \sum ^{k-1}_{i=1}\frac{[h(u_{k-1})(A_iu_{k-1}-B_i)-\beta A_i]^2}{F(u_i)-F(u_{i-1})}+\beta ^2f(u_{k-1})h(u_{k-1}))\right] <0 \end{aligned}$$

and \(\varDelta \) is a decreasing function as \(u_k\rightarrow \infty .\)

Now assume that (21) holds. When \(u_k\rightarrow u^+,\) we have (see, e.g. Zaigraev and Alama-Bućko 2013)

$$\begin{aligned} 1-F(u_k)=L(1/(u^+-u_k))(u^+-u_k)^{\beta }. \end{aligned}$$

Thus,

$$\begin{aligned} f(u_k)\sim & {} \frac{\beta (1-F(u_k))}{u^+-u_k}\sim \beta L(1/(u^+-u_k))(u^+-u_k)^{\beta -1},\\ f'(u_k)\sim & {} \frac{\beta (1-\beta )(1-F(u_k))}{(u^+-u_k)^2}\sim \beta (1-\beta )L(1/(u^+-u_k)) (u^+-u_k)^{\beta -2},\\ \frac{f^2(u_k)}{1-F(u_k)}\sim & {} \frac{\beta ^2(1-F(u_k))}{(u^+-u_k)^2}\sim \beta ^2L(1/(u^+-u_k))(u^+-u_k)^{\beta -2}. \end{aligned}$$

For \(\beta >2\) we obtain (without loss in generality we do not take into account the slowly varying function L):

$$\begin{aligned} \varDelta '_1\sim & {} -f(u_k)h^2(u_{k-1})\sum ^{k-1}_{i=1}\frac{(A_iu_{k-1}-B_i)^2}{F(u_i)-F(u_{i-1})}-2f'(u_k) h(u_{k-1})\\&\times \sum ^{k-1}_{i=1}\frac{(A_iu_{k-1}-B_i) [u^+A_i-B_i]}{F(u_i)-F(u_{i-1})}\\&\sim -\frac{2\beta (1-\beta )h(u_{k-1})(1-F(u_k))}{(u^+-u_k)^2}\sum ^{k-1}_{i=1}\frac{(A_iu_{k-1}-B_i)[u^+A_i-B_i]}{F(u_i)-F(u_{i-1})},\\&\varDelta '_2\sim \frac{\beta ^2(2-\beta )(1-F(u_k))}{(u^+-u_k)^3}\sum ^{k-1}_{i=1}\frac{(u^+A_i-B_i)^2}{F(u_i)-F(u_{i-1})} +\frac{2\beta ^2(1-F(u_k))}{(u^+-u_k)^2}\\&\quad \times \sum ^{k-1}_{i=1}\frac{A_i(u^+A_i-B_i)}{F(u_i)-F(u_{i-1})} \sim \frac{\beta ^2(2-\beta )(1-F(u_k))}{(u^+-u_k)^3}\sum ^{k-1}_{i=1}\frac{(u^+A_i-B_i)^2}{F(u_i)-F(u_{i-1})}<0,\\&\varDelta '_3\sim \frac{\beta f^2(u_{k-1})(u^+-u_{k-1})}{(u^+-u_k)(1-F(u_{k-1}))}\left[ \frac{\beta (2-\beta )(1-F(u_k)) (u^+-u_{k-1})}{(u^+-u_k)^2}\right. \\&\quad \left. +\,\frac{2\beta (1-F(u_k))}{u^+-u_k} -\frac{\beta ^2(u^+-u_{k-1})(1-F(u_k))^2}{(u^+-u_k)^2(1-F(u_{k-1}))}\right] \\&\quad \sim \frac{\beta ^2(2-\beta )f(u_{k-1})h(u_{k-1})(u^+-u_{k-1})^2(1-F(u_k))}{(u^+-u_k)^3}<0. \end{aligned}$$

Thus, \(\varDelta '_1<<\varDelta '_2+\varDelta '_3,\) that is \(\varDelta '_{u_k}\sim \varDelta '_2+\varDelta '_3<0,\) and \(\varDelta \) is a decreasing function as \(u_k\rightarrow u^+.\)

For \(\beta <2\) we have \(\varDelta \rightarrow \infty \) as \(u_k\rightarrow u^+,\) since \(\varDelta _1>0\) while

$$\begin{aligned} \varDelta _2+\varDelta _3\sim \frac{f^2(u_k)}{1-F(u_k)}\left[ \sum ^{k-1}_{i=1}\frac{(B_i-u^+A_i)^2}{F(u_i)-F(u_{i-1})}+ \frac{f^2(u_{k-1})(u^+-u_{k-1})^2}{1-F(u_{k-1})}\right] \rightarrow \infty . \end{aligned}$$

At last, assume that (22) holds, that is \(f'(u_k)\sim -f(u_k)h(u_k)\) and \(h(u_k)u_k\rightarrow \infty \) (see Zaigraev and Alama-Bućko 2013) as \(u_k\rightarrow u^+.\) Then,

$$\begin{aligned} \varDelta '_1\sim & {} -\frac{2f^2(u_k)h(u_k)}{1-F(u_{k-1})}\sum ^{k-1}_{i=1}\frac{(A_iu_k-B_i)^2}{F(u_i)-F(u_{i-1})}\\&+\,2h(u_{k-1})f(u_k)h(u_k)\sum ^{k-1}_{i=1}\frac{(A_iu_{k-1}-B_i)(A_iu_k-B_i)}{F(u_i)-F(u_{i-1})}\\&-\,\frac{f^3(u_k)}{(1-F(u_{k-1}))^2}\sum ^{k-1}_{i=1}\frac{(A_iu_k-B_i)^2}{F(u_i)-F(u_{i-1})}\\&-\,h^2(u_{k-1})f(u_k)\sum ^{k-1}_{i=1}\frac{(A_iu_{k-1}-B_i)^2}{F(u_i)-F(u_{i-1})}\\&+\,\frac{2h(u_{k-1})f^2(u_k)}{1-F(u_{k-1})}\sum ^{k-1}_{i=1}\frac{(A_iu_k-B_i)(A_iu_{k-1}-B_i)}{F(u_i)-F(u_{i-1})},\\&\varDelta '_2\sim -f(u_k)h^2(u_k)\sum ^{k-1}_{i=1}\frac{(B_i-A_iu_k)^2}{F(u_i)-F(u_{i-1})},\\&\varDelta '_3\sim -f(u_{k-1})h(u_{k-1})f(u_k)h^2(u_k)(u_k-u_{k-1})^2. \end{aligned}$$

Since \(f(u_k)=o(h(u_k)),\) we get \(\varDelta '_1=o(f(u_k)h^2(u_k)u^2_k)=o(\varDelta '_2+\varDelta '_3)\) and, therefore, \(\varDelta \) is a decreasing function as \(u_k\rightarrow u^+.\)

Lemma 2

Let \(\mathbf{\xi _n}=(\xi ^{(n)}_1,\ldots ,\xi ^{(n)}_k),\ n\ge 1,\) be random vectors and assume that there exist sequences of positive numbers \(\{c'_n\}\) and \(\{c''_n\}\) and real numbers \(\{h^{(n)}_j\},\ j=1,\ldots ,k,\) such that the sequence of random vectors

$$\begin{aligned} (c'_n(\xi ^{(n)}_1-h^{(n)}_1),\sqrt{n}(\xi ^{(n)}_2-h^{(n)}_2),\ldots ,\sqrt{n}(\xi ^{(n)}_{k-1}-h^{(n)}_{k-1}), c''_n(\xi ^{(n)}_k-h^{(n)}_k)), \end{aligned}$$

as \(n\rightarrow \infty ,\) converges in distribution to a random vector with a continuous density function \(\rho .\) Then

  1. (i)

    under the conditions \(c'_n=c''_n=\sqrt{n}, \rho =\varphi _V,\) where \(\varphi _V\) stands for the density corresponding to \(\mathcal{N}(0, V),\) the sequence of random vectors

    $$\begin{aligned} \sqrt{n}\Bigl (-\frac{\mathbf{a}\xi _\mathbf{n}^T}{\mathbf{b}\xi _\mathbf{n}^T}, \frac{1}{\mathbf{b}\xi _\mathbf{n}^T}-1\Bigr ), \end{aligned}$$
    (26)

    where \(\mathbf{a},\mathbf{b}\in R^k\) are given vectors such that \(\mathbf{a}{} \mathbf{h}^T_n=0, \mathbf{b}{} \mathbf{h}^T_n=1, \mathbf{h}_n=(h^{(n)}_1,\ldots , h^{(n)}_k),\) converges in distribution, as \(n\rightarrow \infty ,\) to the normal random vector with the density \(\varphi _W,\)

    $$\begin{aligned} W=\left[ \begin{array}{cc} \mathbf{a}V\mathbf{a}^T &{} \mathbf{a}V\mathbf{b}^T\\ \mathbf{a}V\mathbf{b}^T &{} \mathbf{b}V\mathbf{b}^T\end{array}\right] ; \end{aligned}$$
  2. (ii)

    under the conditions \(c'_n>>\sqrt{n},\ c''_n=\sqrt{n},\ h^{(n)}_1=0,\ \rho (u_1,\ldots ,u_k)=\rho _0(u_1)\varphi _V(u_2,\ldots ,u_k),\) the sequence of random vectors

    $$\begin{aligned} \left( -c'_n\frac{\xi ^{(n)}_1}{\mathbf{b}\mathbf{\xi _n}^T}, \sqrt{n}\Bigl (\frac{1}{\mathbf{b}\mathbf{\xi _n}^T}-1\Bigr )\right) , \end{aligned}$$

where \(\mathbf{b}\in R^k\) is a given vector such that \(\mathbf{b}\mathbf{h}^T_n=1,\) converges in distribution, as \(n\rightarrow \infty ,\) to the random vector with the density \(\rho _0(-v_1)\varphi _{\overline{\mathbf{b}}V\overline{\mathbf{b}}^T}(v_2),\) \(\overline{\mathbf{b}}=(b_2,\ldots ,b_k);\) (iii) under the conditions \(c'_n=\sqrt{n},\ c''_n>>\sqrt{n},\ h^{(n)}_k=0,\ \rho (u_1,\ldots ,u_k)=\varphi _V(u_1,\ldots ,u_{k-1})\rho _0(u_k),\) the sequence of random vectors

$$\begin{aligned} \left( -c''_n\frac{\xi ^{(n)}_k}{\mathbf{b}\mathbf{\xi _n}^T}, \sqrt{n}\Bigl (\frac{1}{\mathbf{b}\mathbf{\xi _n}^T}-1\Bigr )\right) , \end{aligned}$$

where \(\mathbf{b}\in R^k\) is a given vector such that \(\mathbf{b}\mathbf{h}^T_n=1,\) converges in distribution, as \(n\rightarrow \infty ,\) to the random vector with the density \(\rho _0(-v_1)\varphi _{\overline{\mathbf{b}}V\overline{\mathbf{b}}^T}(v_2),\) \(\overline{\mathbf{b}}=(b_1,\ldots ,b_{k-1}).\)

Proof

  1. (i)

    Obviously, the limit distribution of \(\sqrt{n}(\mathbf{a}\mathbf{\xi _n}^T, \mathbf{b}\mathbf{\xi _n}^T-1)\) is \(\mathcal{N}(0, W).\) The transformation \((u_1,u_2)\mapsto (v_1,v_2)\) of

    $$\begin{aligned} \sqrt{n}(\mathbf{a}\mathbf{\xi _n}^T, \mathbf{b}\mathbf{\xi _n}^T-1)\quad \text{ onto } \sqrt{n}\left( -\frac{\mathbf{a}\mathbf{\xi _n}^T}{\mathbf{b}\mathbf{\xi _n}^T}, \frac{1}{\mathbf{b}\mathbf{\xi _n}^T}-1\right) \end{aligned}$$

    is given by

    $$\begin{aligned} \left\{ \begin{array}{l} \displaystyle {v_1=-\frac{u_1}{1+u_2/\sqrt{n}}}\\ \displaystyle {v_2=-\frac{u_2}{1+u_2/\sqrt{n}}} \end{array}\right. \quad \Longrightarrow \quad \left\{ \begin{array}{l} \displaystyle {u_1=-\frac{v_1}{1+v_2/\sqrt{n}}}\\ \displaystyle {u_2=-\frac{v_2}{1+v_2/\sqrt{n}}.} \end{array}\right. \end{aligned}$$

    This transformation has the Jakobian \(J(v_1,v_2)=(1+v_2/\sqrt{n})^{-3}.\) Therefore, the density of the random vector \(\sqrt{n}(-\mathbf{a}\mathbf{\xi _n}^T/\mathbf{b}\mathbf{\xi _n}^T, 1/\mathbf{b}\mathbf{\xi _n}^T-1)\) is of the form

    $$\begin{aligned} \frac{1}{(1+v_2/\sqrt{n})^3}\varphi _W\Bigl (-\frac{v_1}{1+v_2/\sqrt{n}}, -\frac{v_2}{1+v_2/\sqrt{n}}\Bigr ) \end{aligned}$$

    and, as \(n\rightarrow \infty ,\) statement (i) follows.

  2. (ii)

    Obviously, the limit distribution of \(\sqrt{n}(\sum ^k_{i=2}b_i\xi ^{(n)}_i-1)\) is \(\mathcal{N}(0, \overline{\mathbf{b}}V\overline{\mathbf{b}}^T).\) Due to the asymptotical independency of the components, the random vector \((c'_n\xi ^{(n)}_1,\sqrt{n}(\sum ^k_{i=2}b_i\xi ^{(n)}_i-1)\) has the limit distribution with the density \(\rho _0(u_1)\varphi _{\overline{\mathbf{b}}V\overline{\mathbf{b}}^T}(u_2).\) The transformation \((u_1,u_2)\mapsto (v_1,v_2)\) of

    $$\begin{aligned} (c'_n\xi ^{(n)}_1,\sqrt{n}(\sum ^k_{i=2}b_i\xi ^{(n)}_i-1)\quad \text{ onto } \; \Bigl (-c'_n\frac{\xi ^{(n)}_1}{\mathbf{b}\mathbf{\xi _n}^T}, \sqrt{n}\Bigl (\frac{1}{\mathbf{b}\mathbf{\xi _n}^T}-1\Bigr )\Bigr ) \end{aligned}$$

    is given by

    $$\begin{aligned} \left\{ \begin{array}{l} \displaystyle {v_1=-\frac{u_1}{1+b_1u_1/c'_n+u_2/\sqrt{n}}}\\ \\ \displaystyle {v_2=-\frac{b_1\sqrt{n}u_1/c'_n+u_2}{1+b_1u_1/c'_n+u_2/\sqrt{n}}} \end{array}\right. \quad \Longrightarrow \quad \left\{ \begin{array}{l} \displaystyle {u_1=-\frac{v_1}{1+v_2/\sqrt{n}}}\\ \\ \displaystyle {u_2=-\frac{v_2-b_1\sqrt{n}v_1/c'_n}{1+v_2/\sqrt{n}}.} \end{array}\right. \end{aligned}$$

    This transformation has the Jakobian \(J(v_1,v_2)=(1+v_2/\sqrt{n})^{-3}.\) Thus, the density of the random vector \((-c'_n\xi ^{(n)}_1/\mathbf{b}\mathbf{\xi _n}^T, \sqrt{n}(1/\mathbf{b}\mathbf{\xi _n}^T-1))\) is of the form

    $$\begin{aligned} \frac{1}{(1+v_2/\sqrt{n})^3}\rho _0\Bigl (-\frac{v_1}{1+v_2/\sqrt{n}}\Bigr )\varphi _{\overline{\mathbf{b}} V\overline{\mathbf{b}}^T}\Bigl (-\frac{v_2-b_1\sqrt{n}v_1/c'_n}{1+v_2/\sqrt{n}}\Bigr ). \end{aligned}$$

    As \(n\rightarrow \infty ,\) statement (ii) follows.

  3. (iii)

    This case is treated similarly.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaigraev, A., Alama-Bućko, M. Optimal choice of order statistics under confidence region estimation in case of large samples. Metrika 81, 283–305 (2018). https://doi.org/10.1007/s00184-018-0643-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-018-0643-6

Keywords

Navigation