Skip to main content

Advertisement

Log in

Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this paper, we propose a new approach to the empirical likelihood inference for the parameters in heteroscedastic partially linear single-index models. In the growing dimensional setting, it is proved that estimators based on semiparametric efficient score have the asymptotic consistency, and the limit distribution of the empirical log-likelihood ratio statistic for parameters \((\beta ^{\top },\theta ^{\top })^{\top }\) is a normal distribution. Furthermore, we show that the empirical log-likelihood ratio based on the subvector of \(\beta \) is an asymptotic chi-square random variable, which can be used to construct the confidence interval or region for the subvector of \(\beta \). The proposed method can naturally be applied to deal with pure single-index models and partially linear models with high-dimensional data. The performance of the proposed method is illustrated via a real data application and numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai Z, Saranadasa H (1996) Effect of high dimension: by an example of a two sample problem. Stat Sin 6:311–329

    MathSciNet  MATH  Google Scholar 

  • Carroll R, Fan J, Gijbels I, Wand M (1997) Generalized partially linear single-index models. J Am Stat Assoc 92:477–489

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Hall F (1993) Smoothed empirical likelihood confidence intervals for quantiles. Ann Stat 21:1166–1181

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Peng L, Qin Y (2009) Effects of data dimension on empirical likelihood. Biometrika 96:712–722

    MathSciNet  MATH  Google Scholar 

  • Davidian M, Tsiatis A, Leon S (2005) Semiparametric estimation of treatment effect in a pretest-posttest study with missing data. Stat Sin 20:261–301

    MathSciNet  MATH  Google Scholar 

  • Donohn D (2000) High-dimensional data analysis: high-dimensional data analysis: the curses and blessings of dimensionality. Aide-memoire of a lecture at AMS conference on math challenges of the 21st century

  • Engle R, Granger C, Rise J, Weiss A (1986) Semiparametric estimates of the relation between weather and electricity sales. J Am Stat Assoc 81:310–320

    Article  Google Scholar 

  • Hall P, Hyde C (1980) Martingale central limit theory and its applications. Academic Press, New York

    Google Scholar 

  • Hammer S, Katzenstein D, Hughes M et al (1996) For the AIDS clinical trials group study 175 study team: a trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. New Engl J Med 20:1081–1089

    Article  Google Scholar 

  • Hjort H, Mckeague I, Van Keilegom I (2009) Extending the scope of empirical likelihood. Ann Stat 37:1079–1111

    Article  MathSciNet  MATH  Google Scholar 

  • Huber P (1973) Robust regression: asymptotics, conjectures and Monte Carlo. Ann Stat 1:799–821

    Article  MathSciNet  MATH  Google Scholar 

  • Kolaczyk E (1994) Empirical likelihood for generalized linear models. Stat Sin 4:199–218

    MathSciNet  MATH  Google Scholar 

  • Lai P, Wang Q (2014) Semiparametric efficient estimation for partially linear single-index models with responses missing at random. J Multivar Anal 128:33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Ledoit O, Wolf M (2002) Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann Stat 30:1081–1102

    Article  MathSciNet  MATH  Google Scholar 

  • Li G, Wang Q (2003) Empirical likelihood regression analysis for right censored data. Stat Sin 13:51–68

    MathSciNet  MATH  Google Scholar 

  • Lu X (2009) Empirical likelihood for heteroscedastic partially linear models. J Multivar Anal 100:387–395

    Article  MathSciNet  MATH  Google Scholar 

  • Lu X, Qi Y (2004) Empirical likelihood for the additive risk model. Probab Math Stat 24:419–431

    MathSciNet  MATH  Google Scholar 

  • Ma Y, Zhu L (2013) Doubly robust and efficient estimators for heteroscedastic partially linear single-index models allowing high dimensional covariates. J R Stat Soc Ser B 75:305–322

    Article  MathSciNet  Google Scholar 

  • Ma Y, Chiou J, Wang N (2006) Efficient semiparametric estimator for heteroscedastic partially linear models. Biometrika 943:75–84

    Article  MathSciNet  MATH  Google Scholar 

  • Owen A (1988) Empirical likelihood ratio confidence intervals for a single function. Biometrika 75:237–249

    Article  MathSciNet  MATH  Google Scholar 

  • Owen A (1990) Empirical likelihood ratio confidence regions. Ann Stat 18:90–120

    Article  MathSciNet  MATH  Google Scholar 

  • Owen A (1991) Empirical likelihood for linear models. Ann Stat 19:1725–1747

    Article  MathSciNet  MATH  Google Scholar 

  • Owen A (2001) Empirical likelihood. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Qin J, Lawless J (1994) Empirical likelihood and general estimating equations. Ann Stat 22:300–325

    Article  MathSciNet  MATH  Google Scholar 

  • Qin G, Jing B (2001) Empirical likelihood for Cox regression model under random censorship. Commun Stat Simul Comput 30:79–90

    Article  MathSciNet  MATH  Google Scholar 

  • Shi J, Lau T (2000) Empirical likelihood for partially linear models. J Multivar Anal 72:132–148

    Article  MathSciNet  MATH  Google Scholar 

  • Tsao M (2004) Bounds on coverage probabilities of the empirical likelihood ratio confidence regions. Ann Stat 32:1215–1221

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Q, Rao J (2002) Empirical likelihood-based inference in linear errors-in-covariables models with validation data. Biometrika 89:345–358

    Article  MathSciNet  MATH  Google Scholar 

  • Xia H, Härdle W (2006) Semi-parametric estimation of partially linear single-index models. J Multivar Anal 97:1162–1184

    Article  MathSciNet  MATH  Google Scholar 

  • Xia Y, Tong H, Li W (1999) On extended partially linear single-index models. Biometrika 86:831–842

    Article  MathSciNet  MATH  Google Scholar 

  • Xia Y, Tong H, Li W, Zhu L (2002) An adaptive estimation of dimension reduction space. J R Stat Soc Ser B 64:363–410

    Article  MathSciNet  MATH  Google Scholar 

  • Xue L, Zhu L (2006) Empirical likelihood for single-index models. J Multivar Anal 97:1295–1312

    Article  MathSciNet  MATH  Google Scholar 

  • Yu Y, Ruppert D (2002) Penalized spline estimation for partially linear single-index models. J Am Stat Assoc 97:1042–1054

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Wang T, Zhu L, Liang H (2012) A dimension reduction based approach for estimation and variable selection in partially linear single-index models with high-dimensional covariates. Electron J Stat 6:2235–2273

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu L, Xue L (2006) Empirical likelihood confidence regions in a partially linear single-index model. J R Stat Soc Ser B 68:549–570

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor, the associate editor and the referees for their insightful comments and suggestions which led to an improved presentation of the article. Fang’s research is supported by Scientific Research Fund of Hunan Provincial Education Department (17C0392). Liu and Lu’s research is supported by Open Fund of Innovation Platform in Hunan Province Colleges and Universities (13k030), and the Construct Program of the Key Discipline in Hunan Province. Lu’s work is partially supported by Discovery Grants (RG/PIN261567-2013) from National Science and Engineering Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianglin Fang.

Appendix

Appendix

To prove the main theorems, we need to give the following set of conditions.

Assumption 1

Let \(\mathrm{Var}(X_{i})=\Sigma _{xi}\) and \(\mathrm{Var}(Z_{i})=\Sigma _{zi}\), the eigenvalues of \(\Sigma _{xi}\) and \(\Sigma _{zi}\) satisfy \(C_{1}\le \gamma _{1}(\Sigma _{xi})\le \cdots \le \gamma _{p}(\Sigma _{xi})\le C_{2}\) and \(C_{1}\le \gamma _{1}(\Sigma _{zi})\le \cdots \le \gamma _{r}(\Sigma _{zi})\le C_{2}\) for some constants \(0<C_{1}<C_{2}\), for \(i=1\cdots n\). There is a constant \(\delta >0\) such that \(E(\varepsilon ^{4+\delta }|X,Z)<\infty \).

Assumption 2

There are \(v(\cdot )\), \(\eta =\eta (X,Z)\), such that \(E(\varepsilon ^{2}|X,Z)=v(\eta )\), \(0<C_{1}<v(\cdot )<C_{2}<\infty \) for some constants \(0<C_{1}<C_{2}\), and The eigenvalues of \(\mathrm{Var}(X_{i}|\eta (X_{i}, Z_{i}))\) are bounded away from zero and infinity.

Assumption 3

There exists \(v_{1}(X,Z)\) such that

$$\begin{aligned}&\left| \frac{\partial ^{2}E(X|Z^{\top }\theta )}{\partial \theta _{i}\partial \theta _{j}}\right| , \left| \frac{\partial ^{2}E(Z|Z^{\top }\theta )}{\partial \theta _{i}\partial \theta _{j}}\right| , \left| \frac{\partial ^{2}E(w|Z^{\top }\theta )}{\partial \theta _{i}\partial \theta _{j}}\right| , \left| \frac{\partial ^{2}E(wZ|Z^{\top }\theta )}{\partial \theta _{i}\partial \theta _{j}}\right| ,\\&\left| \frac{\partial ^{2}E(wX|Z^{\top }\theta )}{\partial \theta _{i}\partial \theta _{j}}\right|<v_{1}(X,Z),Ev_{1}^{2}<\infty , (i,j=2,\ldots , r). \end{aligned}$$

Further there exists \(v_{2}(X,Z)\) such that

$$\begin{aligned} \left| \frac{\partial ^{3}\eta (X,Z)}{\partial \gamma _{i}\partial \gamma _{j}\partial \gamma _{l}}\right|<v_{2}(X,Z), Ev_{2}^{2}<\infty , (i,j,l=1,\ldots , p+r), \end{aligned}$$

where \((X^{\top },Z^{\top })^{\top }=(\gamma _{1},\ldots ,\gamma _{p+r})^{\top }\). Further there exists \(v_{3}(X,Z)\) such that

$$\begin{aligned} \left| \frac{\partial ^{4}g(Z^{\top }\theta )}{\partial \theta _{i}\partial \theta _{j}\partial \theta _{k}\partial \theta _{l}}\right| , \left| \frac{\partial ^{4}v(\eta )}{\partial \eta _{i_{1}}\partial \eta _{j_{1}}\partial \eta _{k_{1}}\partial \eta _{l_{1}}}\right|<v_{3}(X,Z), Ev_{3}^{2}<\infty , \end{aligned}$$

where the dimension of \(\eta \) is \(p_{1}\), and \(i,j,k,l=2,\ldots ,r\), \(i_{1},j_{1},k_{1},l_{1}=1,\ldots , p_{1}\).

Assumption 4

Assume that the random variable \(\eta \) and \(Z^{\top }\theta \) have densities \(f_{\eta }(\eta )\) and \(f_{Z^{\top }\theta }(Z^{\top }\theta )\), satisfying \(0<\inf f_{\eta }(\eta )\le \sup f_{\eta }(\eta )<\infty \) and \(0<\inf f_{Z^{\top }\theta }(Z^{\top }\theta )\le \sup f_{Z^{\top }\theta }(Z^{\top }\theta )<\infty \). Further there exists \(v_{4}(X,Z)\) such that

$$\begin{aligned}&\left| \frac{\partial ^{2}f_{Z^{\top }\theta }(Z^{\top }\theta ))}{\partial \theta _{i}\partial \theta _{j}}\right| , \left| \frac{\partial ^{2}f_{\eta }(\eta )}{\partial \eta _{k}\partial \eta _{l}}\right| \\&\quad<v_{4}(X,Z), Ev_{4}^{2}<\infty , (i,j=2,\ldots , p;~ k,l=1,\ldots , p_{1}). \end{aligned}$$

Assumption 5

The kernel function \(K_{h}(\cdot )\) is symmetric and its derivative is continuous with compact support contained in \([-1,1]\).

Assumption 6

The bandwidths \(h_{i}\) satisfy \(\log ^{2}(n)/(nh_{i})\rightarrow 0\) for \(i=1,2,3\). In addition, \(nh_{1}^{4}\rightarrow \infty \), \(nh_{1}^{8}\rightarrow 0\), \(h_{1}^{4}\log ^{2}(n)/h_{i}\rightarrow 0\) and \(\log ^{4}(n)/(nh_{1}h_{i})\rightarrow 0\) for \(i=1,2,3\), \(h_{2}=O(n^{-1/5})\) and \(h_{3}=O(n^{-1/5})\).

Assumption 7

\(p,r\rightarrow \infty \), \(pn^{-1/5}\rightarrow 0\), \(rn^{-1/5}\rightarrow 0\), as \(n\rightarrow \infty \).

Assumption 8

\(E\Vert X\Vert ^{4}<\infty \), \(E\Vert Z\Vert ^{4}<\infty \), \(E\Vert \varepsilon X\Vert ^{4}<\infty \), \(E\Vert \varepsilon Z\Vert ^{4}<\infty \) and \(E|\varepsilon |^{4}<\infty \).

Assumption 9

Let

$$\begin{aligned} \xi _{n}(\beta ,\theta )=w\varepsilon \left[ X^{\top }-\frac{E(wX^{\top }|Z^{\top }\theta )}{E(w|Z^{\top }\theta )}, g'(Z^{\top }\theta )\left\{ Z^{\top }-\frac{E(wZ^{\top }|Z^{\top }\theta )}{E(w|Z^{\top }\theta )}\right\} \right] ^{\top }, \end{aligned}$$

and \(\xi _{nl}(\beta ,\theta )\) be the l-th component of \(\xi _{n}(\beta ,\theta )\), \(l=1,\ldots ,p, p+2,\ldots ,p+r\). As \(n\rightarrow \infty \), there is a positive constant C such that, \(E(\Vert \xi _{n}(\beta ,\theta )/\sqrt{p}\Vert ^{4})<C\), \(E(\Vert XX^{\top }\Vert ^{4})<C\), \(E(\Vert XZ^{\top }\Vert ^{4})<\infty \) and \(E(\Vert ZX^{\top }\Vert ^{4})<C\).

Assumptions 16 ensure the function \(g(Z_{i}^{\top }\theta )\), \(g'(Z_{i}^{\top }\theta )\), \(w(X_{i},Z_{i})\), \(E\{{\hat{w}}(X,Z)\)\(|Z_{i}^{\top }\theta \}\), \(E\{{\hat{w}}(X,Z)X|Z_{i}^{\top }\theta \}\) and \(E\{{\hat{w}}(X,Z)Z_{-1}| Z_{i}^{\top }\theta \}\) are estimated with retained precision and the nonparametric estimation does not affect the asymptotic result of the estimated empirical likelihood ratio, i.e., the estimated empirical likelihood ratio \({\tilde{L}}(\beta ,\theta )\) has the same asymptotic distribution as the ordinary empirical likelihood ratio \(L(\beta ,\theta )\). Furthermore, Assumptions 16 ensure the existence of the estimator \(({\hat{\beta }}^{\top },{\hat{\theta }}^{\top })^{\top }\) for parameters \((\beta ^{\top },\theta ^{\top })^{\top }\). Assumption 7 is a technical condition, and Assumption 8 ensures that there exists an asymptotic variance for the estimator of the growing parameters \((\beta ^{\top },\theta ^{\top })^{\top }\). Assumption 9 controls the tail probability behavior of the estimating equation. Because establishing the asymptotic theoretical results for empirical likelihood approach under the situation with diverging dimensionality on covariates is very challenging, these conditions are not the weakest possible and the bounds in the stochastic analysis are conservative. This is also the case in Ma and Zhu (2013), these strong conditions facilitate technical derivations.

Let \({\tilde{l}}(\lambda ,\beta ,\theta )=n^{-1}\sum _{i=1}^{n}\log \left\{ 1+\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta )\right\} \), \(\bar{{\hat{\xi }}}(\beta ,\theta )=n^{-1}\sum _{i=1}^{n}{\hat{\xi }}_{i}(\beta ,\theta )\), \(a_{n}=O_{p}\{(p/n)^{1/2}\}\) and C will denote a generic positive constant that may be different in different uses throughout the “Appendix”. In addition, we use the Frobenius norm of a matrix A, defined as \(\Vert A\Vert =\{\mathrm {tr}(A^{\top }A)\}^{\frac{1}{2}}\), where \(\mathrm {tr}(A)\) denotes the trace ofmatrix A.

Proof of Theorem 2.1

Proof

We first expand

$$\begin{aligned} 0= & {} \frac{1}{\sqrt{n}}A_{2}\sum \limits _{i=1}^{n}\left\{ Y_{i}-X_{i}^{\top }{\hat{\beta }}+{\hat{g}}'\left( Z_{i}^{\top }{\hat{\theta }}\right) \right\} {\hat{w}}_{i}{\hat{g}}' \left( Z_{i}^{\top }{\hat{\theta }}\right) \left\{ Z_{i}-\frac{{\hat{E}}\left( {\hat{w}}Z|Z_{i}^{\top }{\hat{\theta }}\right) }{{\hat{E}}\left( {\hat{w}}|Z_{i}^{\top }{\hat{\theta }}\right) }\right\} \nonumber \\= & {} \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}{\hat{w}}_{i}{\hat{g}}'\left( Z_{i}^{\top }{\hat{\theta }}\right) A_{2}\left\{ Z_{i}-\frac{E\left( wZ|Z_{i}^{\top }\theta _{0}\right) }{E\left( w|Z_{i}^{\top } \theta _{0}\right) }\right\} X_{i}^{\top }\left( \beta _{0}-{\hat{\beta }}\right) \nonumber \\&+\,\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}{\hat{w}}_{i}{\hat{g}}'\left( Z_{i}^{\top }{\hat{\theta }}\right) A_{2}\left\{ \frac{E\left( wZ|Z_{i}^{\top }\theta _{0}\right) }{E\left( w|Z_{i}^{\top }\theta _{0} \right) }-\frac{{\hat{E}}\left( {\hat{w}}Z|Z_{i}^{\top }{\hat{\theta }}\right) }{{\hat{E}}\left( {\hat{w}}|Z_{i}^{\top }{\hat{\theta }}\right) }\right\} X_{i}^{\top }\left( \beta _{0}-{\hat{\beta }}\right) \nonumber \\&+\,\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\left\{ g\left( Z_{i}^{\top }\theta _{0}\right) -{\hat{g}}\left( Z_{i}^{\top }\theta _{0}\right) \right\} {\hat{w}}_{i}{\hat{g}}'\left( Z_{i}^{\top }{\hat{\theta }}\right) A_{2}\left\{ Z_{i}-\frac{E\left( wZ|Z_{i}^{\top }\theta _{0}\right) }{E\left( w|Z_{i}^{\top }\theta _{0}\right) }\right\} \nonumber \\&+\,\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\left\{ g\left( Z_{i}^{\top }\theta _{0}\right) -{\hat{g}}\left( Z_{i}^{\top }\theta _{0}\right) \right\} {\hat{w}}_{i}{\hat{g}}'\left( Z_{i}^{\top }{\hat{\theta }}\right) A_{2}\left\{ \frac{E\left( wZ|Z_{i}^{\top }\theta _{0}\right) }{E\left( w|Z_{i}^{\top }\theta _{0}\right) }\right. \nonumber \\&\left. -\,\frac{{\hat{E}}\left( {\hat{w}}Z|Z_{i}^{\top }{\hat{\theta }}\right) }{{\hat{E}}\left( {\hat{w}}|Z_{i}^{\top }\hat{\theta }\right) }\right\} \nonumber \\&+\,\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\left\{ g\left( Z_{i}^{\top }\theta _{0}\right) -{\hat{g}}\left( Z_{i}^{\top }{\hat{\theta }}\right) \right\} {\hat{w}}_{i}{\hat{g}}'\left( Z_{i}^{\top }{\hat{\theta }}\right) A_{2}\left\{ Z_{i}-\frac{{\hat{E}}\left( {\hat{w}}Z|Z_{i}^{\top }{\hat{\theta }}\right) }{{\hat{E}}\left( {\hat{w}}|Z_{i}^{\top }{\hat{\theta }}\right) }\right\} \nonumber \\&+\,\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\varepsilon _{i}{\hat{w}}_{i}{\hat{g}}'\left( Z_{i}^{\top }{\hat{\theta }}\right) A_{2}\left\{ Z_{i}-\frac{{\hat{E}}\left( {\hat{w}}Z|Z_{i}^{\top } {\hat{\theta }}\right) }{{\hat{E}}\left( {\hat{w}}|Z_{i}^{\top }{\hat{\theta }}\right) }\right\} . \end{aligned}$$
(17)

Similar to the proof of Proposition 2 in Ma and Zhu (2013), we can obtain from the second equation in (3) that

$$\begin{aligned}&A_{2}E\left[ wg'\left( Z^{\top }\theta _{0}\right) \left\{ Z-\frac{E\left( wZ|Z^{\top }\theta _{0}\right) }{E\left( w|Z^{\top }\theta _{0}\right) }\right\} X^{\top }\right] \sqrt{n}\left( {\hat{\beta }}-\beta _{0}\right) \nonumber \\&\qquad +A_{2}E\left[ w\{g'\left( Z^{\top }\theta _{0}\right) \}^{2}\left\{ Z-\frac{E\left( wZ|Z^{\top }\theta _{0}\right) }{E\left( w|Z^{\top }\theta _{0}\right) }\right\} Z^{\top }\right] \sqrt{n}\left( {\hat{\theta }}- \theta _{0}\right) \nonumber \\&\quad =\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\varepsilon _{i}w_{i}g'\left( Z_{i}^{\top }\theta _{0}\right) A_{2}\left\{ Z_{i}-\frac{E\left( wZ|Z_{i}^{\top }\theta _{0}\right) }{E\left( w|Z_{i}^{\top } \theta _{0}\right) }\right\} +o_{p}\left( 1\right) . \end{aligned}$$
(18)

Similarly, from the first equation in (3), we have that

$$\begin{aligned}&A_{1}E\left[ w\left\{ X-\frac{E\left( wX|Z^{\top }\theta _{0}\right) }{E\left( w|Z^{\top }\theta _{0}\right) }\right\} X^{\top }\right] \sqrt{n}\left( {\hat{\beta }}-\beta _{0}\right) \nonumber \\&\qquad +A_{1}E\left[ wg'\left( Z^{\top }\theta _{0}\right) \left\{ X-\frac{E\left( wX|Z^{\top }\theta _{0}\right) }{E\left( w|Z^{\top }\theta _{0}\right) }\right\} Z^{\top }\right] \sqrt{n}\left( {\hat{\theta }}-\theta _{0}\right) \nonumber \\&\quad =\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\varepsilon _{i}w_{i}A_{1}\left\{ X_{i}-\frac{E\left( wX|Z_{i}^{\top }\theta _{0}\right) }{E\left( w|Z_{i}^{\top }\theta _{0}\right) }\right\} +o_{p}\left( 1\right) . \end{aligned}$$
(19)

Combining (17) and (18) implies that

$$\begin{aligned} AV^{1/2}\left( { \begin{array}{*{10}c} {\hat{\beta }}-\beta _{0}\\ {\hat{\theta }}-\theta _{0}\\ \end{array}} \right) {=}AV^{-1/2}\left( { \begin{array}{*{10}c} \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\varepsilon _{i}w_{i}\left\{ X_{i}-\frac{E\left( wX|Z_{i}^{\top }\theta _{0}\right) }{E\left( w|Z_{i}^{\top }\theta _{0}\right) }\right\} \\ \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\varepsilon _{i}w_{i}g'\left( Z_{i}^{\top }\theta _{0}\right) \left\{ Z_{i}-\frac{E\left( wZ|Z_{i}^{\top }\theta _{0}\right) }{E\left( w|Z_{i}^{\top }\theta _{0} \right) }\right\} \\ \end{array}}\right) {+}o_{p}(1). \end{aligned}$$

Applying the Lindeberg–Feller central limit theorem, we can establish

$$\begin{aligned} \sqrt{n}AV^{1/2}\left\{ \left( {\hat{\beta }}^{\top },{\hat{\theta }}^{\top }\right) ^{\top }-\left( \beta _{0}^{\top },\theta _{0}^{\top }\right) ^{\top }\right\} \rightarrow N(0,G) \end{aligned}$$

in distribution, and the proof of Theorem 2.1 is completed. \(\square \)

Next, we present the following lemmas before proving Theorem 2.2.

Lemma 5.1

Under Assumptions of Theorem 2.2, \(\max _{1\le i \le n}\Vert {\hat{\xi }}_{i}(\beta ,\theta )\Vert =o_{p}(n^{1/4}\sqrt{p})\) and \(\max _{1\le i \le n}|\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta )|=o_{p}(1)\) for all \(\lambda =O_{p}(a_{n})\).

Proof

From Assumptions 8 and 9, for any \(\epsilon >0\),

$$\begin{aligned} P\left\{ \max _{1\le i \le n}\Vert \xi _{i}\left( \beta ,\theta \right) \Vert \le n^{1/4}\sqrt{p}\epsilon \right\}\le & {} \sum _{i=1}^{n}P\left\{ \Vert \xi _{i}\left( \beta ,\theta \right) \Vert \le n^{1/4}\sqrt{p}\epsilon \right\} \nonumber \\\le & {} \frac{1}{np^{2}\epsilon ^{4}}\sum _{i=1}^{n}E\Vert \xi _{i}\left( \beta ,\theta \right) \Vert ^{4}\nonumber \\= & {} \frac{1}{\epsilon ^{k}}E\Vert \xi _{1}\left( \beta ,\theta \right) /\sqrt{p}\Vert ^{4}. \end{aligned}$$
(20)

By Cauchy–Schwarz inequality, \(\Vert \xi _{1}(\beta ,\theta )/\sqrt{p}\Vert ^{4}\le 1/p\sum _{l=1}^{p+r}|\xi _{1l}(\beta ,\theta )|^{4}\), where \(\xi _{1l}(\beta ,\theta )\) are the lth component of \(\xi _{1}(\beta ,\theta )\). According to (20), we have

$$\begin{aligned} \max _{1\le i \le n}\Vert \xi _{i}(\beta ,\theta )\Vert =o_{p}\left( n^{1/4}\sqrt{p}\right) . \end{aligned}$$

Similar to the proof of (17) and (18) above, it is easy to check that

$$\begin{aligned} \Vert {\hat{\xi }}_{i}(\beta ,\theta )\Vert =\Vert \xi _{i}(\beta ,\theta )\Vert +O_{p}(p). \end{aligned}$$

Then, by Assumption 7, we have

$$\begin{aligned} \Vert {\hat{\xi }}_{i}\left( \beta ,\theta \right) \Vert =o_{p}\left( n^{1/4}\sqrt{p}\right) +O_{p}\left( p\right) =o_{p}\left( n^{1/4}\sqrt{p}\right) , \end{aligned}$$

and for all \(\lambda =O_{p}(a_{n})\),

$$\begin{aligned} \max _{1\le i \le n}|\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta )|=o_{p}(1). \end{aligned}$$

The proof of Lemma 5.1 is completed. \(\square \)

Lemma 5.2

Under Assumptions of Theorem 2.2, \(\Vert S_{n}-V\Vert =O_{p}(p/\sqrt{n})\), where \(S_{n}=1/n\sum _{i=1}^{n}{\hat{\xi }}_{i}(\beta ,\theta ){\hat{\xi }}_{i}(\beta ,\theta )^{\top }\).

Proof

Similar to the proof of Lemma 5.4 in Chen et al. (2009), we have \(tr\{(S_{n}-V)^{\otimes 2}\}=O_{p}(p^{2}/n)\). Therefore, by the definition of Frobenius norm, \(\Vert S_{n}-V\Vert =\{tr[(S_{n}-V)^{\top }(S_{n}-V)]\}^{1/2}=O_{p}(p/\sqrt{n})\). \(\square \)

Lemma 5.3

Under Assumptions of Theorem 2.2, \(\Vert \lambda \Vert =O_{p}(a_{n})\), where \(\lambda \) is the root of (8).

Proof

According to (8), \(\lambda \in {\mathbb {R}}^{p+r}\) satisfies

$$\begin{aligned} 0=\frac{1}{n}\sum _{i=1}^{n}\frac{{\hat{\xi }}_{i}(\beta ,\theta )}{1+\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta )}=:\psi (\lambda ). \end{aligned}$$

Let \(\lambda =\rho \alpha \), where \(\rho \ge 0\), \(\alpha \in {\mathbb {R}}^{p+r}\) and \(\Vert \alpha \Vert =1\). Substituting \(1/(1+\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta ))=1-\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta )/(1+\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta ))\) into \(\alpha ^{\top }\psi (\lambda )=0\), we have

$$\begin{aligned} |\alpha ^{\top }\bar{{\hat{\xi }}}_{i}(\beta ,\theta )|\ge \frac{\rho }{1+\rho \max \limits _{1\le i \le n}\Vert \xi _{i}(\beta ,\theta )\Vert }\alpha ^{\top }S_{n}\alpha , \end{aligned}$$

where \(S_{n}=\frac{1}{n}\sum \limits _{i=1}^{n}{\hat{\xi }}_{i}(\beta ,\theta ){\hat{\xi }}_{i}(\beta ,\theta )^{\top }\). Because of

$$\begin{aligned} 0< 1+\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta )\le 1+\rho \max \limits _{1\le i \le n}\Vert \xi _{i}(\beta ,\theta )\Vert , \end{aligned}$$

we have

$$\begin{aligned} \rho [\alpha ^{\top }S_{n}\alpha -\alpha ^{\top }{\hat{\xi }}_{i}(\beta ,\theta )\max \limits _{1\le i \le n}\Vert \xi _{i}(\beta ,\theta )\Vert ]\le \left| \alpha ^{\top }\bar{{\hat{\xi }}}_{i}(\beta ,\theta )\right| . \end{aligned}$$
(21)

Because \(|\alpha ^{\top }\bar{{\hat{\xi }}}_{i}(\beta ,\theta )|\le \Vert \bar{{\hat{\xi }}}_{i}(\beta ,\theta )\Vert =O_{p}(\sqrt{p/n})\) and Lemma 5.1, then

$$\begin{aligned} \max \limits _{1\le i \le n}\Vert \xi _{i}(\beta ,\theta )\Vert \left| \alpha ^{\top }\bar{{\hat{\xi }}}_{i}(\beta ,\theta )\right| =o_{p}(1). \end{aligned}$$
(22)

By combining (21) and (22), we have

$$\begin{aligned} |\rho [\alpha ^{\top }S_{n}\alpha +o_{p(1)}]|=O_{p}(\sqrt{p/n}). \end{aligned}$$

According to Lemma 5.2, for a constant \(C_{1}>0\), \(P(\alpha ^{\top }S_{n}\alpha \ge \frac{1}{2}C_{1})\rightarrow 1\) as \(n\rightarrow \infty \). Hence, \(\rho =O_{p}(\sqrt{p/n})\), that is \(\Vert \lambda \Vert =\rho =O_{p}(\sqrt{p/n})\), and the proof of Lemma 5.3 is completed. \(\square \)

Lemma 5.4

Under Assumptions of Theorem 2.2, as \(n\rightarrow \infty \),

$$\begin{aligned}&\left\{ 2\left( p+r-1\right) \right\} ^{-1}\left\{ \left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) ^{\top }V^{-1}\left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n} {\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) \right. \\&\quad \left. -\left( p+r-1\right) \right\} {\mathop {\rightarrow }\limits ^{L}} N\left( 0,1\right) \!. \end{aligned}$$

Proof

The proof entails applying the martingale central limit theorem as given in Hall and Hyde (1980), and is omitted. \(\square \)

Lemma 5.5

Under Assumptions of Theorem 2.2,

$$\begin{aligned} \left\{ \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right\} ^{\top }\left( S_{n}^{-1}-V^{-1}\right) \left\{ \frac{1}{\sqrt{n}}\sum _{i=1}^{n} {\hat{\xi }}_{i}\left( \beta ,\theta \right) \right\} =o_{p}\left( \sqrt{p}\right) . \end{aligned}$$

Proof

Let \(D_{n}=V^{-1/2}S_{n}V^{-1/2}-I_{p+r}\), where \(I_{p+r}\) is the \(p+r\) dimensional identity matrix.

$$\begin{aligned} S_{n}^{-1}-V^{-1}= & {} V^{-1/2}\left( V^{1/2}S_{n}^{-1}V^{1/2}-I_{p+r}\right) V^{-1/2}\\= & {} V^{-1/2}\left\{ -D_{n}+D_{n}^{2}+D_{n}^{2}\left( V^{1/2}S_{n}^{-1}V^{1/2}-I_{p+r}\right) \right\} V^{-1/2}. \end{aligned}$$

It is easy to check that

$$\begin{aligned} tr\left( S_{n}-V\right)= & {} tr\left( V^{1/2}\left( V^{-1/2}S_{n}V^{-1/2}-I_{p+r}\right) V^{1/2}\right) \\= & {} tr\left( D_{n}VD_{n}V\right) \ge \gamma _{1}^{2}\left( V\right) tr\left( D_{n}^{2}\right) , \end{aligned}$$

where \(\gamma _{1}(V)\) is the smallest eigenvalue of V. Similar to the proof of Lemma 5.4 in Chen et al. (2009), we have

$$\begin{aligned} tr\left( D_{n}^{2}\right) \le tr\left\{ \left( S_{n}-V\right) ^{2}\right\} =O_{p}\left( p^{2}/n\right) . \end{aligned}$$

Then

$$\begin{aligned} tr\left( S_{n}^{-1}-V^{-1}\right) ^{2}\le & {} 2tr\left\{ V^{-2}\left( -D_{n}+D_{n}^{2}\right) ^{2}\right\} +2tr\left\{ D_{n}^{4}\left( S_{n}^{-1}-V^{-1}\right) ^{2}\right\} \\\le & {} 2tr\left\{ V^{-2}\left( -D_{n}+D_{n}^{2}\right) ^{2}\right\} \\&+2\left\{ tr\left( D_{n}^{2}\right) \right\} ^{2}tr\left\{ \left( S_{n}^{-1}-V^{-1}\right) ^{2}\right\} \\= & {} 2tr\left\{ V^{-2}\left( -D_{n}+D_{n}^{2}\right) ^{2}\right\} +o_{p}\left( tr\left\{ \left( S_{n}^{-1}-V^{-1}\right) ^{2}\right\} \right) \\= & {} o_{p}\left( p^{2}/n\right) . \end{aligned}$$

Because \(\Vert \frac{1}{n}\sum _{i=1}^{n}{\hat{\xi }}_{i}(\beta ,\theta )\Vert =O_{p}(\sqrt{p/n})\), we can obtain

$$\begin{aligned}&\left\{ \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right\} ^{\top }\left( S_{n}^{-1}-V^{-1}\right) \left\{ \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right\} \\&\quad \le n\Vert \frac{1}{n}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \Vert ^{2}\sqrt{tr\left( S_{n}^{-1}-V^{-1}\right) ^{2}}=o_{p}\left( \sqrt{p}\right) . \end{aligned}$$

\(\square \)

Proof of Theorem 2.2

Proof

Put \(W_{i}=\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta ), i=1,\ldots ,n\). By expanding Eq. (8), we obtain

$$\begin{aligned} 0=\sum _{i=1}^{n}\frac{{\hat{\xi }}_{i}\left( \beta ,\theta \right) }{1+\lambda ^{\top }{\hat{\xi }}_{i}\left( \beta ,\theta \right) } =\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) -\sum _{i=1}^{n}\left\{ {\hat{\xi }}_{i}\left( \beta ,\theta \right) {\hat{\xi }}_{i}\left( \beta ,\theta \right) ^{\top }\right\} \lambda +R_{n},\qquad \end{aligned}$$
(23)

where \(R_{n}=\sum _{i=1}^{n}\frac{{\hat{\xi }}_{i}(\beta ,\theta )(\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta ))^{2}}{(1+\vartheta _{i})^{3}}\) and \(|\vartheta _{i}|\le |\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta )|\). By Lemma 5.1, we have \(\max _{1\le i\le n}|\vartheta _{i}|=o_{p}(1)\). Hence \(R_{n}=R_{n1}\{1+o_{p}(1)\}\), where

$$\begin{aligned} R_{n1}=\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \left( \lambda ^{\top }{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) ^{2}. \end{aligned}$$

Apply Lemmas 5.1 and 5.3, we obtain

$$\begin{aligned} \Vert n^{-1}R_{n}\Vert \le C\Vert \lambda \Vert ^{2}\max _{1\le i \le n}\Vert {\hat{\xi }}_{i}(\beta ,\theta )\Vert n^{-1}\sum _{i=1}^{n}\Vert {\hat{\xi }}_{i}(\beta ,\theta )\Vert ^{2}=o_{p}(a_{n}). \end{aligned}$$
(24)

By (23), we have

$$\begin{aligned} \lambda =\left\{ \sum _{i=1}^{n}{\hat{\xi }}_{i}(\beta ,\theta ){\hat{\xi }}_{i}(\beta ,\theta )^{\top }\right\} ^{-1}\sum _{i=1}^{n}{\hat{\xi }}_{i}(\beta ,\theta )+ \left\{ \sum _{i=1}^{n}{\hat{\xi }}_{i}(\beta ,\theta ){\hat{\xi }}_{i}(\beta ,\theta )^{\top }\right\} ^{-1}R_{n}. \end{aligned}$$

Applying Taylor’s expansion, for some \(\zeta _{i}\) such that \(|\zeta _{i}|\le |\lambda ^{\top }{\hat{\xi }}_{i}(\beta ,\theta )|\), we obtain

$$\begin{aligned} \log \left( 1+\lambda ^{\top }{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) =\lambda ^{\top }{\hat{\xi }}_{i}\left( \beta ,\theta \right) -\frac{\left\{ \lambda ^{\top }{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right\} ^{2}}{2}+ \frac{\left\{ \lambda ^{\top }{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right\} ^{3}}{3\left( 1+\zeta _{i}\right) ^{4}}. \end{aligned}$$

Therefore,

$$\begin{aligned} {\tilde{l}}\left( \beta ,\theta \right)= & {} \left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) ^{\top }\left\{ \frac{1}{n}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) {\hat{\xi }}_{i}\left( \beta ,\theta \right) ^{\top }\right\} ^{-1}\left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) \nonumber \\&-\frac{1}{n}R_{n}^{\top }\left\{ \frac{1}{n}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) {\hat{\xi }}_{i}\left( \beta ,\theta \right) ^{\top }\right\} ^{-1}R_{n}+\sum _{i=1}^{n}\frac{2\left\{ \lambda ^{\top } {\hat{\xi }}_{i}\left( \beta ,\theta \right) \right\} ^{3}}{3\left( 1+\zeta _{i}\right) ^{4}}\nonumber \\= & {} \left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) ^{\top }V^{-1}\left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) \nonumber \\&+\left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) ^{\top }\left[ \left\{ \frac{1}{n}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) {\hat{\xi }}_{i}\left( \beta ,\theta \right) ^{\top }\right\} ^{-1} -V^{-1}\right] \nonumber \\&\times \left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) -\frac{1}{n}R_{n}^{\top }\left\{ \frac{1}{n}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) {\hat{\xi }}_{i}\left( \beta ,\theta \right) ^{\top }\right\} ^{-1}R_{n}\nonumber \\&+\frac{2}{3}\sum _{i=1}^{n} \left\{ \lambda ^{\top }{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right\} ^{3}\left\{ 1+o_{p}\left( 1\right) \right\} . \end{aligned}$$
(25)

By Lemma 5.5, we have

$$\begin{aligned}&\left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) ^{\top }\left[ \left\{ \frac{1}{n}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) {\hat{\xi }}_{i}\left( \beta ,\theta \right) ^{\top }\right\} ^{-1}-V^{-1}\right] \nonumber \\&\times \left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) =o_{p}\left( 1\right) . \end{aligned}$$
(26)

By Lemmas 5.15.3 and (24), we can obtain

$$\begin{aligned} \frac{1}{n}R_{n}^{\top }\left\{ \frac{1}{n}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) {\hat{\xi }}_{i}\left( \beta ,\theta \right) ^{\top }\right\} ^{-1}R_{n}=o_{p}\left( 1\right) , \end{aligned}$$
(27)

and

$$\begin{aligned} \frac{2}{3}\sum _{i=1}^{n} \left\{ \lambda ^{\top }{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right\} ^{3}\left\{ 1+o_{p}\left( 1\right) \right\} =o_{p}\left( \sqrt{p}\right) . \end{aligned}$$
(28)

It follows from (25)–(28) that

$$\begin{aligned} {\tilde{l}}\left( \beta ,\theta \right) =\left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) ^{\top }V^{-1}\left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n} {\hat{\xi }}_{i}\left( \beta ,\theta \right) \right) +o_{p}\left( \sqrt{p}\right) . \end{aligned}$$

Hence the theorem follows from Lemmas 5.4 and 5.5, and the proof of Theorem 2.2 is completed. \(\square \)

Proof of Theorem 2.3

Proof

We first prove that \(\max _{1\le i \le n}\Vert \hat{{\tilde{\xi }}}_{i}(\beta ^{(1)})\Vert =o_{p}(n^{1/2})\). It can be shown that

$$\begin{aligned} \hat{{\tilde{\xi }}}_{i}\left( \beta \right)= & {} {\hat{w}}_{i}\left\{ Y_{i}-X_{i}^{\left( 1\right) \top }\beta ^{\left( 1\right) }-X_{i}^{\left( 2\right) \top }{\hat{\beta }}^{\left( 2\right) }-{\hat{g}}\left( Z_{i}^{\top }{\hat{\theta }}\right) \right\} \left\{ X_{i}^{\left( 1\right) }-\frac{{\hat{E}}\left( {\hat{w}}X^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{{\hat{E}}\left( {\hat{w}}|Z_{i}^{\top }{\hat{\theta }}\right) }\right\} \nonumber \\= & {} \left\{ w_{i}\left( 1+o_{p}\left( 1\right) \right) \right\} \left\{ \varepsilon _{i}+X_{i}^{\top }\left( \beta -{\hat{\beta }}\right) +X_{i}^{\left( 1\right) \top }\left( {\hat{\beta }}^{\left( 1\right) }-\beta ^{\left( 1\right) }\right) +\left( g\left( Z_{i}^{\top }{\hat{\theta }}\right) \right. \right. \nonumber \\&\left. \left. -{\hat{g}}\left( Z_{i}^{\top }{\hat{\theta }}\right) \right) \right\} \nonumber \\&\times \left\{ \left( X_{i}^{\left( 1\right) }-\frac{E\left( wX^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{E\left( w|Z_{i}^{\top }{\hat{\theta }}\right) }\right) +\left( \frac{E\left( wX^{\left( 1\right) } |Z_{i}^{\top }{\hat{\theta }}\right) }{E\left( w|Z^{\top }{\hat{\theta }}\right) }-\frac{{\hat{E}}\left( {\hat{w}}X^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{{\hat{E}}\left( {\hat{w}}|Z_{i}^{\top } {\hat{\theta }}\right) }\right) \right\} \nonumber \\= & {} M_{i1}+M_{i2}+M_{i3}+M_{i4}+M_{i5}+M_{i6}+M_{i7}+M_{i8}, \end{aligned}$$
(29)

where

$$\begin{aligned} M_{i1}= & {} \{w_{i}\left( 1+o_{p}\left( 1\right) \right) \}\varepsilon _{i}\left\{ X_{i}^{\left( 1\right) }-\frac{E\left( wX^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{E\left( w|Z_{i}^{\top }{\hat{\theta }}\right) } \right\} ,\\ M_{i2}= & {} \{w_{i}\left( 1+o_{p}\left( 1\right) \right) \}\varepsilon _{i}\left\{ \frac{E\left( wX^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{E\left( w|Z^{\top }{\hat{\theta }}\right) }-\frac{{\hat{E}} \left( {\hat{w}}X^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{{\hat{E}}\left( {\hat{w}}|Z^{\top }{\hat{\theta }}\right) }\right\} ,\\ M_{i3}= & {} \{w_{i}\left( 1+o_{p}\left( 1\right) \right) \}X_{i}^{\top }\left( \beta -{\hat{\beta }}\right) \left\{ X_{i}^{\left( 1\right) }-\frac{E\left( wX^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{E\left( w|Z_{i}^{\top } {\hat{\theta }}\right) }\right\} ,\\ M_{i4}= & {} \{w_{i}\left( 1+o_{p}\left( 1\right) \right) \}X_{i}^{\top }\left( \beta -{\hat{\beta }}\right) \left\{ \frac{E\left( wX^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{E\left( w|Z^{\top }{\hat{\theta }}\right) } -\frac{{\hat{E}}\left( {\hat{w}}X^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{{\hat{E}}\left( {\hat{w}}|Z^{\top }{\hat{\theta }}\right) }\right\} ,\\ M_{i5}= & {} \{w_{i}\left( 1+o_{p}\left( 1\right) \right) \}X_{i}^{\left( 1\right) \top }\left( {\hat{\beta }}^{\left( 1\right) }-\beta ^{\left( 1\right) }\right) \left\{ X_{i}^{\left( 1\right) }-\frac{E\left( wX^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{E\left( w|Z_{i}^{\top }{\hat{\theta }}\right) }\right\} ,\\ M_{i6}= & {} \{w_{i}\left( 1+o_{p}\left( 1\right) \right) \}X_{i}^{\left( 1\right) \top }\left( {\hat{\beta }}^{\left( 1\right) }\right. \\&\left. -\beta ^{\left( 1\right) }\right) \left\{ \frac{E\left( wX^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{E\left( w|Z_{i} {\hat{\theta }}\right) }-\frac{{\hat{E}}\left( {\hat{w}}X^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{{\hat{E}}\left( {\hat{w}}|Z^{\top }{\hat{\theta }}\right) }\right\} ,\\ M_{i7}= & {} \{w_{i}\left( 1+o_{p}\left( 1\right) \right) \}\left( g\left( z_{i}^{\top }{\hat{\theta }}\right) -{\hat{g}}\left( Z_{i}^{\top }{\hat{\theta }}\right) \right) \left\{ X_{i}^{\left( 1\right) }-\frac{E\left( wX^{\left( 1\right) }|Z_{i}^{\top } {\hat{\theta }}\right) }{E\left( w|Z_{i}^{\top }{\hat{\theta }}\right) }\right\} ,\\ M_{i8}= & {} \{w_{i}\left( 1+o_{p}\left( 1\right) \right) \}\left( g\left( z_{i}^{\top }{\hat{\theta }}\right) \right. \\&\left. -{\hat{g}}\left( Z_{i}^{\top }{\hat{\theta }}\right) \right) \left\{ \frac{E\left( wX^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{E\left( w| Z_{i}^{\top }{\hat{\theta }}\right) }-\frac{{\hat{E}}\left( {\hat{w}}X^{\left( 1\right) }|Z_{i}^{\top }{\hat{\theta }}\right) }{{\hat{E}}\left( {\hat{w}}|Z^{\top }{\hat{\theta }}\right) }\right\} . \end{aligned}$$

By (29), we can obtain that

$$\begin{aligned} \max _{1\le i \le n}\Vert \hat{{\tilde{\xi }}}_{i}(\beta ^{(1)})\Vert\le & {} \max _{1\le i \le n}\Vert M_{i1}\Vert +\max _{1\le i \le n}\Vert M_{i2}\Vert +\max _{1\le i \le n}\Vert M_{i3}\Vert +\max _{1\le i \le n}\Vert M_{i4}\Vert \\+ & {} \max _{1\le i \le n}\Vert M_{i5}\Vert +\max _{1\le i \le n}\Vert M_{i6}\Vert +\max _{1\le i \le n}\Vert M_{i7}\Vert +\max _{1\le i \le n}\Vert M_{i8}\Vert . \end{aligned}$$

Similar to the proof of Proposition 2 in Ma and Zhu (2013), it is easy to show that

$$\begin{aligned} \max _{1\le i \le n}\Vert M_{l1}\Vert =o_{p}(n^{1/2}),\quad l=1,\ldots ,8. \end{aligned}$$

Therefore, we have \(\max _{1\le i \le n}\Vert \hat{{\tilde{\xi }}}_{i}(\beta ^{(1)})\Vert =o_{p}(n^{1/2})\). In addition, from the proof of Theorem 3.1 in Li and Wang (2003), as \(n\rightarrow \infty \), we can also show that

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\hat{{\tilde{\xi }}}_{i}\left( \beta ^{\left( 1\right) }\right) {\mathop {\longrightarrow }\limits ^{L}} N\left( 0,V_{1}\left( \beta ^{\left( 1\right) }\right) \right) , \end{aligned}$$
(30)
$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\hat{{\tilde{\xi }}}_{i}\left( \beta ^{\left( 1\right) }\right) \hat{{\tilde{\xi }}}_{i}^{\top }\left( \beta ^{\left( 1\right) }\right) {\mathop {\longrightarrow }\limits ^{p}} V_{1}\left( \beta ^{\left( 1\right) }\right) , \end{aligned}$$
(31)

where

$$\begin{aligned} V_{1}\left( \beta ^{\left( 1\right) }\right) =E\left\{ wX^{\left( 1\right) }X^{\left( 1\right) \top }-\frac{E\left( wX^{\left( 1\right) }|Z^{\top }{\hat{\theta }}\right) E\left( wX^{\left( 1\right) T}|Z^{\top }{\hat{\theta }}\right) }{E\left( w|Z^{\top }{\hat{\theta }}\right) }\right\} \end{aligned}$$

and \({\mathop {\rightarrow }\limits ^{p}}\) stands for convergence in probability. By \(\max _{1\le i \le n}\Vert \hat{{\tilde{\xi }}}_{i}(\beta ^{(1)})\Vert =o_{p}(n^{1/2})\) and Talor expansion to (10), we can obtain that

$$\begin{aligned} {\tilde{l}}\left( \beta ^{\left( 1\right) }\right) =2\sum _{i=1}^{n}\lambda ^{\left( 1\right) \top }\hat{{\tilde{\xi }}}_{i}\left( \beta ^{\left( 1\right) }\right) -\sum _{i=1}^{n}\left\{ \lambda ^{\left( 1\right) \top }\hat{{\tilde{\xi }}}_{i} \left( \beta ^{\left( 1\right) }\right) \right\} ^{2}+o_{p}\left( 1\right) . \end{aligned}$$
(32)

Similar to the proof of Theorem 17 in Owen (1990), we have

$$\begin{aligned}&\sum _{i=1}^{n}\left\{ \lambda ^{\left( 1\right) \top }\hat{{\tilde{\xi }}}_{i}\left( \beta ^{\left( 1\right) }\right) \right\} ^{2}=\sum _{i=1}^{n}\lambda ^{\left( 1\right) \top }\hat{{\tilde{\xi }}}_{i}\left( \beta ^{\left( 1\right) }\right) +o_{p}\left( 1\right) , \end{aligned}$$
(33)
$$\begin{aligned}&\lambda ^{\left( 1\right) }=\left\{ \sum _{i=1}^{n}\hat{{\tilde{\xi }}}_{i}\left( \beta ^{\left( 1\right) }\right) \hat{{\tilde{\xi }}}_{i}\left( \beta ^{\left( 1\right) }\right) ^{\top }\right\} ^{-1}\sum _{i=1}^{n}\hat{{\tilde{\xi }}}_{i} \left( \beta ^{\left( 1\right) }\right) +o_{p}\left( n^{-1/2}\right) . \end{aligned}$$
(34)

Combining (32)–(34) implies that

$$\begin{aligned}&{\tilde{l}}\left( \beta ^{\left( 1\right) }\right) \\&\quad =\left\{ \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\hat{{\tilde{\xi }}}_{i}\left( \beta ^{\left( 1\right) }\right) \right\} ^{\top }\left\{ \frac{1}{n}\sum _{i=1}^{n}\hat{{\tilde{\xi }}}_{i} \left( \beta ^{\left( 1\right) }\right) \hat{{\tilde{\xi }}}_{i}^{\top }\left( \beta ^{\left( 1\right) }\right) \right\} ^{-1}\left\{ \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\hat{{\tilde{\xi }}}_{i}\left( \beta ^{\left( 1\right) }\right) \right\} \\&\qquad +o_{p}\left( 1\right) . \end{aligned}$$

Therefore, together with (30) and (31), we can show that \({\tilde{l}}(\beta ^{(1)}){\mathop {\rightarrow }\limits ^{L}} \chi _{k}^{2}\), and the proof is completed. \(\square \)

The partially linear model or the single-index model is a special case of the partially linear single-index model. We can prove Theorems 3.1 and 3.2 by using the same arguments in the proofs of Theorems 2.12.3, hence their proofs are omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Liu, W. & Lu, X. Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data. Metrika 81, 255–281 (2018). https://doi.org/10.1007/s00184-018-0642-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-018-0642-7

Keywords

Navigation